A Hybrid Approach for Optimal Multi-Class Classification of Neglected Tropical Skin Diseases using Multi-Channel HOG Features
Downloads
Neglected tropical skin diseases (NTDs) pose significant health challenges, especially in resource-limited settings. Early diagnosis is crucial for effective treatment and preventing complications. This study proposes a novel multi-class classification approach using multi-channel HOG features and a hybrid metaheuristic algorithm to improve the accuracy of NTD diagnosis. The method extracts optimal HOG features from images of Buruli Ulcer, Leprosy, and Cutaneous Leishmaniasis through different cell sizes, generating multiple training datasets. A hybrid Whale Optimization Algorithm and Shark Smell Optimization Algorithm (WOA-SSO) optimizes the Error Correcting Output Code (ECOC) framework for SVM, achieving superior multi-class classification performance. Notably, the multi-channel dataset, derived from averaging HOG features of different cell sizes, yields the highest accuracy of 89%. This study demonstrates the potential of the proposed method for developing mobile applications that facilitate early and accurate diagnosis of NTDs through image analysis, potentially improving patient outcomes and disease control. The hybrid metaheuristic algorithm plays a crucial role in optimizing the ECOC framework, enhancing the accuracy and efficiency of the multi-class classification process. This approach holds significant promise for revolutionizing NTD diagnosis and management, particularly in underserved communities.
Copyright (c) 2024 Nyatte Steyve, Perabi Steve, Mepouly Kedy, Salomé Ndjakomo, Ele pierre

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlikel 4.0 International (CC BY-SA 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).





