The Impactness of SMOTE as Imbalance Class Handling for Myocardial Infarction Complication Classification using Machine Learning Approach with Data Imputation and Hyperparameter
Downloads
Myocardial Infarction (MI) is a critical medical emergency characterized by the sudden blockage of blood flow to the heart muscle, often resulting from a blood clot in a coronary artery that has been narrowed by atherosclerotic plaque buildup. This condition demands immediate attention, as prolonged disruption of blood supply can cause irreversible damage to the heart muscle. Diagnosing MI typically involves a combination of methods, including a physical examination, electrocardiogram (ECG) analysis, blood tests to measure heart-specific enzymes, and imaging techniques such as coronary angiography. Early prediction of potential MI complications is crucial to prevent severe outcomes and improve patient prognosis. This study focuses on the early prediction of MI complications through the application of machine learning classification methods. We employed algorithms such as Support Vector Machine (SVM), Random Forest, and XGBoost to analyze patient medical records and accurately predict these complications. The selection of Support Vector Machine (SVM), Random Forest, and XGBoost in this study is driven by their proven effectiveness in handling complex classification problems. To manage incomplete datasets and preserve valuable information, data imputation techniques like K-Nearest Neighbors (KNN) Imputation, Iterative Imputation, and MissForest were applied. KNN, Iterative, and MissForest imputations were chosen to handle missing data due to their effectiveness in preserving data integrity, which is crucial for accurate predictions in myocardial infarction complication studies. Additionally, Bayesian Optimization was utilized to fine-tune the hyperparameters of the models, thereby enhancing their predictive accuracy. The Iterative Imputation method yielded the best performance, particularly in SVM and XGBoost algorithms. SVM achieved 100% accuracy, precision, sensitivity, F1 score, and Area Under the Curve (AUC), while XGBoost attained 99.4% accuracy, 100% precision, 79.6% sensitivity, an F1 score of 88.7%, and an AUC of 0.898. While XGBoost and MissForest proved to be the most successful pairing, the overall effectiveness of the models suggests that Iterative Imputation and Random Forest also have potential under certain conditions.
Copyright (c) 2024 Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlikel 4.0 International (CC BY-SA 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).





