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Abstract  

Software defect prediction (SDP) is essential for improving software reliability 
by enabling the early identification of modules that may contain defects before 
the release stage. SDP commonly exhibits redundant or non-contributory 
metrics, underscoring the need for feature selection to derive a more 
informative subset. To address this problem, the present study investigates 
and compares the effectiveness of three feature-selection strategies: 
SelectKBest (SKB), Recursive Feature Elimination (RFE), and the hybrid 
SKB+RFE, in enhancing the performance of tree-based classifiers on the NASA 
Metrics Data Program (MDP) data collections. The study utilizes three 
classification algorithms, namely Random Forest (RF), Extra Trees (ET), and 
Bagging (Decision Tree), with Area Under the Curve (AUC) serving as the 
primary metric for assessing model performance. Experimental results reveal 
that the RFE and Extra Trees combination yields the top performance, 
producing an average AUC of 0.7855. This is subsequently followed by the 
SKB+RFE+ET configuration, which achieves an AUC of 0.7809, and SKB+ET at 
0.7776. These findings demonstrate that iterative wrapper-based approaches 
such as RFE can identify more relevant and effective feature subsets than filter 
or hybrid strategies, with the RFE+Extra Trees configuration yielding the 
strongest overall predictive performance and wrapper-based methods 
exhibiting higher stability across heterogeneous datasets. Even without 
hyperparameter tuning and relying solely on class-weighting rather than 
explicit resampling techniques, the findings offer empirical insight into the 
isolated influence of feature selection on predictive performance. Overall, the 
study confirms that RFE combined with Extra Trees offers the strongest 
predictive performance on NASA MDP data collections and forms a foundation 
for developing more adaptive and robust models. 
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I. Introduction 

Software plays a fundamental role across modern 
industrial sectors, including manufacturing, healthcare, 
education, and transportation. Inadequate software 
quality may trigger system failures, reduce reliability, and 
lead to substantial losses. One essential measure to 
ensure the software’s quality involves performing defect 
prediction early within the software development lifecycle. 
Software defect prediction (SDP) contributes significantly 
to improving system reliability and lowering maintenance 
costs by identifying modules that are likely to be defective 
prior to release [1]. However, many software metric 
datasets contain redundant or irrelevant features, which 
can cause overfitting and degrade the performance of 
classification models [2]. Consequently, feature selection 
is a crucial step in identifying the most relevant subset of 
features to support efficient and accurate predictive 
modeling [3]. 

Feature selection methods in SDP are usually divided 
into filter, wrapper, and hybrid approaches [4]. Filter 
methods identify candidate features using statistical 
measures such as correlation, information gain, or mutual 
information without considering the underlying classifier. 
Although they scale efficiently, their inability to capture 
redundancy and complex feature interactions remains a 
notable limitation. Wrapper methods, in contrast, assess 
feature subsets by evaluating the classifier's 
performance, allowing them to account for feature 
dependencies but increasing computational demands and 
the likelihood of overfitting. Hybrid techniques combine 
these paradigms by applying a fast filter step to eliminate 
irrelevant attributes before refining the selection using a 
wrapper method, thereby balancing efficiency and 
predictive performance [5].  

Recent advances in feature-selection research have 
introduced more sophisticated mechanisms. Deep 
learning-based approaches leverage latent 
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representations to model nonlinear feature interactions 
[6], while attention-driven architectures assign relevance 
scores through learned weighting strategies [7]. In 
parallel, developments in automated machine learning 
(AutoML) have enabled automated exploration of feature 
subsets and model configurations using meta-learning 
and search-based optimization methods [8]. Despite their 
promise, these techniques typically necessitate 
considerable computational effort and access to sizeable 
training datasets, limiting their applicability to classical 
benchmark datasets such as NASA MDP. For this reason, 
the present study focuses on lightweight, interpretable, 
and computationally feasible feature-selection strategies: 
SelectKBest, RFE, and their hybrid integration, which 
offer competitive predictive capability while 
accommodating the practical constraints of real-world 
SDP settings. 

Numerous studies have employed these paradigms to 
improve SDP performance. Sharma [9] compared eight 
feature-selection techniques and found that wrapper-
based techniques, including the Recursive Feature 
Elimination (RFE), demonstrated superior stability and 
accuracy over simple filter-based approaches, achieving 
an average AUC of 0.72. Similarly, Suntoro [10] reported 
that ensemble strategies combining AWEIG and AdaCost 
with Naïve Bayes produced an average AUC of 0.752 on 
the NASA MDP dataset. Balogun [11] showed that a 
multifilter-wrapper hybrid method achieved average AUC 
values between 0.75 and 0.78 on NASA MDP datasets. 
Other studies highlight the effectiveness of metaheuristic 
and multi-wrapper approaches: Maulida [12] 
demonstrated that a Firefly-based feature-selection 
method increased AUC values up to 0.77 on the NASA 
MDP datasets, while Aryanti [13] reported that the 
combination of RFE, Boruta, and Custom Grid Search 
with a Copeland ranking method achieved an AUC of 
0.749, despite the higher computational overhead and 
increased risk of overfitting. 

Despite these developments, several research gaps 
remain in the existing SDP literature. First, most studies 
focus on a single category of feature-selection technique 
and do not conduct systematic comparisons of filter-, 
wrapper-, and hybrid-based approaches under consistent 
experimental settings. Second, cross-dataset 
performance stability remains underexplored, even 
though the variability in feature dimensionality and class 
imbalance across NASA MDP datasets poses substantial 
challenges for generalization. As one of the most widely 
utilized and diverse benchmark repositories, NASA MDP, 
with its twelve heterogeneous modules, provides an 
appropriate foundation for assessing the robustness of 
feature-selection methods. Notably, Sharma [9] 
conducted a multi-method comparison; however, the 
evaluation covered only two NASA MDP datasets, thereby 
limiting the breadth of the findings. Third, comparative 
analyses involving tree-based classifiers such as Random 
Forest, Extra Trees, and Bagging (Decision Tree) remain 
limited, leaving the interplay between feature-selection 
strategies and tree-based learning models insufficiently 
understood. By evaluating three distinct feature-selection 
paradigms across all twelve NASA MDP datasets and 

three tree-based classifiers within a unified experimental 
framework, this study directly addresses these limitations. 
It provides a broader and more reliable comparative 
analysis. Considering that NASA MDP datasets exhibit 
high dimensionality and varying degrees of class 
imbalance [10], rigorous validation procedures are 
required. In this study, these challenges are addressed 
using stratified 10-fold cross-validation to maintain a 
balanced class distribution within each fold [14]. 

To close these gaps, this research conducts a 
comparative evaluation of three feature-selection 
strategies: SelectKBest (filter-based), Recursive Feature 
Elimination (wrapper-based), and a combined 
SelectKBest+RFE hybrid approach, applied to three tree-
based classification algorithms: Random Forest, Extra 
Trees, and Bagging (Decision Tree). The evaluation is 
performed on twelve NASA MDP datasets using Stratified 
10-Fold Cross-Validation, with the Area Under the Curve 
(AUC) employed as the primary metric, and Average 
Precision, Recall, Accuracy (ACC), and F1 function as 
supporting metrics. 

This study primarily seeks to assess and compare the 
efficacy of the three feature-selection approaches in 
shaping the performance of tree-based software defect 
prediction models, and to determine which method 
achieves the best average performance across NASA 
MDP datasets. By examining multiple datasets with 
differing structures and class distributions, this 
investigation provides empirical insights into how different 
feature-selection strategies influence prediction quality 
and performance stability in heterogeneous SDP 
scenarios. 

This study makes several significant contributions, 
which are summarized as follows. First, it provides a 
comprehensive comparative analysis of filter-based, 
wrapper-based, and hybrid feature-selection paradigms 
under a unified experimental framework involving twelve 
NASA MDP datasets and multiple tree-based classifiers. 
Second, it systematically evaluates the effectiveness of 
these feature-selection strategies under class-
imbalanced conditions using Stratified 10-Fold Cross-
Validation, with AUC as the primary evaluation metric. 
Third, the experimental results demonstrate that wrapper-
based approaches, particularly RFE, exhibit superior 
capability in identifying relevant features for tree-based 
classifiers, with the Extra Trees model achieving the 
highest AUC performance among all evaluated 
configurations. 

 

II. Materials and Method 

Fig 1 presents the overall procedural workflow underlying 
the proposed study. The research incorporates three 
feature-selection techniques: SelectKBest (SKB), 
Recursive Feature Elimination (RFE), and the combined 
SelectKBest+RFE method. The process begins with 
collecting data from the NASA Metrics Data Program 
(MDP), which consists of twelve software modules. 
Following data acquisition, a preprocessing stage is 
performed, including converting the target label to binary 
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(0 or 1). The evaluation is then carried out using Stratified 
10-Fold Cross-Validation to preserve the proportional 
allocation of defect and non-defect class groups within 
every fold. SelectKBest utilizes the mutual information 
scoring function to assess the relevance of each feature 
to the defect label. In contrast, RFE iteratively eliminates 
features with minimal contribution until an optimal subset 
is obtained. The SelectKBest+RFE hybrid approach 
combines the advantages of both techniques by applying 
mutual information-based filtering prior to RFE’s iterative 
elimination process. 

Building on this workflow, each pairing of feature-
selection method and classification model is assessed 
with the Area Under the Curve (AUC) metric applied to 
evaluate software defect prediction effectiveness. The 
study systematically examines and contrasts the 
performance of three feature-selection approaches on 
tree-based software defect prediction models, aiming to 
determine which method provides the highest average 
performance across the NASA MDP datasets. Through 
this comparative investigation, the study highlights the 
influence of different feature-selection strategies on 
prediction quality across datasets with diverse 
characteristics. 

In this study, the comparative assessment of feature-
selection techniques is purposefully confined to tree-
based classifiers, notably Random Forest (RF), Extra 
Trees (ET), and Bagging with Decision Tree-based 
learners. These ensemble models are commonly utilized 
in SDP because they perform reliably on high-dimensional 
code metrics, effectively capture nonlinear relationships, 
and naturally accommodate heterogeneous feature 
scales without requiring explicit normalization. They also 
generate feature-importance measures that align with the 
impurity-based criteria used in feature selection, thereby 
strengthening the interpretability of the selected metrics. 
Relative to kernel-based approaches such as Support 
Vector Machines or neural network models, the selected 
classifiers provide a practical balance between predictive 
accuracy, computational efficiency, and model 
transparency, an essential consideration when 
experiments must be consistently executed across 
multiple NASA MDP datasets. As a result, non-tree-based 
models are excluded from the present study and are 
identified as a direction for future research. 

This study also highlights the importance of 
maintaining performance stability across the NASA MDP 
datasets, which differ considerably in class imbalance 
levels and feature characteristics. To reinforce the model’s 
generalization capability, all experiments were executed 
uniformly across all twelve datasets. Through this 
approach, the analysis becomes more comprehensive in 
determining whether a given feature-selection technique 
can sustain stable predictive performance across 
datasets that vary in dimensionality, distribution patterns, 
and noise levels. Accordingly, the study evaluates both 
the contributions of the selected features and the 
robustness of each method when confronted with the 
heterogeneous characteristics of the NASA MDP 
datasets. 

 

A. Data Collection 

The present research makes use of twelve datasets 
provided by the NASA MDP D”, all of which are publicly 
available at: 
https://github.com/klainfo/NASADefectDataset/tree/mast
er. The NASA MDP collection (CM1-PC5) is widely 
regarded as a benchmark source in SDP research and is 
commonly utilized to construct and evaluate SDP models 

[15]. Each dataset provides static code metrics at the 
module level, where a module may correspond to a 
method, function, or internal routine in the software 
system [16]. The selection of these twelve datasets is 
intended to capture a broad spectrum of scenarios and 
levels of complexity associated with software defect 
prediction.  

Despite their extensive use, the NASA MDP datasets 
exhibit several well-known challenges, particularly severe 
class imbalance [17] and the presence of noisy or 
irrelevant features [18]. Class imbalance is particularly 
severe in several datasets, such as MC1 (1.8% defective 
modules) and PC2 (2.2% defective modules), where 
defective modules are extremely scarce. In contrast, 
datasets such as MC2 (35.5%) and PC5 (27%) exhibit 
more proportionate class distributions. Such disparities 
have notable implications for machine-learning behavior, 
influencing model sensitivity to minority classes, the 
stability of feature-selection results, and the dependability 
of performance metrics. Consequently, a clear 
understanding of each dataset’s imbalance profile is vital 
to ensure equitable and reliable model evaluation across 
all experimental settings. A comprehensive summary of 
the dataset characteristics used in the analysis is 
presented in Table 1. 

 

 

Fig 1. Study Workflow Diagram 
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Table 1. NASA-MDP Dataset Details 

Datasets Attributes Instances 
Non-
Defects 

Defects 
Defective 
(%) 

CM1 38 327 285 42 12.8 

JM1 22 7720 6108 1612 20.9 

KC1 22 1162 868 294 25.3 

KC3 40 194 158 36 18.6 

MC1 39 1952 1916 36 1.8 

MC2 40 124 80 44 35.5 

MW1 38 250 225 25 10 

PC1 38 679 624 55 8.1 

PC2 37 722 706 16 2.2 

PC3 38 1053 923 130 12.3 

PC4 38 1270 1094 176 13.9 

PC5 39 1694 1236 458 27 

 

Although several NASA MDP datasets contain 
pronounced class imbalance, this study deliberately 
excludes any resampling-based balancing methods. The 
choice is made to ensure that the influence of the feature-
selection techniques may be objectively evaluated without 
confounding effects arising from synthetic data generation 
or modified class distributions. Instead, model-level class 
weighting is applied where supported, and Stratified K-
Fold Cross-Validation is implemented to maintain the 
original class proportions across folds. In this design, the 
comparative analysis remains focused on the inherent 
behavior and effectiveness of the feature-selection 
strategies under naturally imbalanced conditions. 

B. Preprocessing 

The data preprocessing stage was carried out to ensure 
that the dataset met the required standards of quality, 
consistency, and cleanliness prior to model training. This 
stage is essential for preparing raw data in order that it 
can be handled efficiently by ML algorithms [19]. In this 
study, several preprocessing steps were implemented. 
The process began by removing non-predictive attributes, 
such as the ID column, which serves solely as a unique 
identifier and provides no information relevant to defect 
labels [20].  

Table 2. Before Preprocessing 

id LOCK_BLANK BRANCH_OUT … 
LOC 

TOTAL 
Defective 

1 2 3 … 9 N 

2 3 3 … 13 N 

3 38 35 … 109 N 

4 1 7 … 41 Y 

… … … … … … 

325 3 3 … 12 N 

326 6 9 … 32 N 

327 1 3 … 10 N 

Subsequently, label encoding was used to transform the 
categorical target variable into a numeric form, enabling 
the model to interpret it appropriately [21]. Specifically, 
across all datasets, the label ‘Y’ indicating a defective 

module was transformed into ‘1’, whereas the label ‘N’ 
indicating a non-defective module was transformed into 
‘0’. Examples of this label transformation are presented in 
Table 2 and Table 3. 

Table 3. Following Preprocessing 

LOCK_BLANK BRANCH_OUT … 
LOC 

TOTAL 
Defective 

2 3 … 9 0 

3 3 … 13 0 

38 35 … 109 0 

1 7 … 41 1 

… … … … … 

3 3 … 12 0 

6 9 … 32 0 

1 3 … 10 0 

 

C. Stratified 10-Fold Cross-Validation 

After completing the preprocessing stage to ensure data 
cleanliness and quality, the study proceeded to the data 
partitioning phase. At this stage, the Stratified 10-Fold 
Cross-Validation method was applied, splitting the dataset 
across ten folds while maintaining consistent proportions 
between defect and non-defect categories within every 
fold [22]. This method was chosen to address the 
challenges posed by imbalanced class distributions, 
where a purely random split may produce folds containing 
very few or no samples from the minority class, potentially 
introducing bias into the model performance assessment 
[23]. As illustrated in Fig 2 [24], the stratified approach 
ensures that every fold proportionally reflects the overall 
data distribution. In each iteration, nine folds are used for 
training, with the remaining fold serving as the evaluation 
set; this cycle continues until each fold serves as the test 
set [25]. 

D. SelectKBest 

This present study adopts the SelectKBest (SKB) 
technique, a filter-based feature-selection approach that 
identifies the k highest-scoring features by evaluating 
their quantitative relevance to the target variable. The 
approach is selected for its computational efficiency and 
straightforward implementation [26]. In this work, Mutual 
Information (MI) serves as the scoring metric. Formally, 
the MI between a feature X and the target class Y is 
expressed as Eq. (1) [27]. 

 

Fig 2. Stratified K-Fold CV Scheme [24] 
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𝐼(𝑋; 𝑌) = ∑ ∑ 𝑝(𝑥, 𝑦) log(
𝑝(𝑥, 𝑦)

𝑝(𝑥)𝑝(𝑦)
)

𝑦∈𝑌𝑥∈𝑋

 (1) 

which quantifies the extent to which uncertainty about Y 
diminishes when X is observed. A higher MI value 
indicates a stronger dependency between the feature and 
the target, including non-linear relationships that cannot 
be captured by correlation-based metrics [28]. Using this 
formulation, SKB ranks all available features and selects 
the top k features as defined by the K_FINAL parameter. 
The SKB algorithm is summarized in the pseudocode 
shown in Table 4. 

Table 4. Algorithm 1 

SelectKBest (Mutual Information) 

1. BEGIN 
2. Dataset = load_csv(FOLDER_PATH) 
3. (X, y) = split_features_and_target(Dataset) 
4. X = impute_median(X) 
5. skb = SelectKBest(score_func=mutual_information, 

k=K_FINAL) 
6. X_skb = skb.fit_transform(X, y) 
7. SelectedFeatures = skb.get_support_indices() 
8. OUTPUT SelectedFeatures, X_skb 
9. END  

 

E. Recursive Feature Elimination 

In the wrapper-based feature-selection stage, this study 
uses Recursive Feature Elimination (RFE), a wrapper 
method that evaluates model performance as it 
progressively removes the least informative features. 
During each iteration, RFE orders all predictors according 
to model-specific importance measures such as impurity-
based feature importance in tree-based classifiers and 
discards those contributing minimally to predictive 
accuracy. By relying on the model’s internal evaluation 
rather than independent statistical measures, this iterative 
procedure ensures that feature reduction is closely 
aligned with the classifier’s learning behavior. RFE is 
selected because it accommodates interactions among 
features and adapts the selection process to the 
characteristics of the underlying model [9] [29]. Through 
this mechanism, the approach allows the production of a 
highly representative and relevant feature subset relative 
to filter-based methods. Given these advantages, RFE 
offers a balanced trade-off between complexity and 
performance, thereby serving as an effective feature 
selection technique within the context of software defect 
prediction [9]. Table 5 presents the pseudocode for the 
RFE algorithm.  

Table 5. Algorithm 2 

Recursive Feature Elimination 

1. BEGIN 
2. Dataset = load_csv(FOLDER_PATH) 
3. (X, y) = split_features_and_target(Dataset) 
4. X = impute_median(X) 
5. base_model = RandomForest(n_estimator=200, 

class_weight=balanced, random_state=42) 
6. rfe = RFE(estimator=base_model, 

n_selected_features=K_FINAL, step_size=0.1) 
7. X_rfe = rfe.fit_transform(X, y) 
8. SelectedFeatures = rfe.get_support_indices() 
9. OUTPUT SelectedFeatuers, X_rfe 

10. END 

 

F. Hybrid Feature Selection Strategy (SKB + RFE) 

This study employs a hybrid feature-selection workflow 
that integrates SelectKBest (SKB) with Recursive Feature 
Elimination (RFE) to combine the strengths of filter-based 
and wrapper-based techniques. The process begins with 
SKB, which uses mutual-information-based univariate 
scoring to select the top 25 features (K_FIRST) in 
accordance with the study’s fixed experimental setup. 
This initial step reduces dimensionality by discarding 
features that exhibit low independent discriminative 
capability. The resulting 25 features are then passed to 
the RFE module, which evaluates inter-feature 
relationships through an iterative, model-driven 
elimination process. During each iteration, the tree-based 
classifier generates importance rankings for all remaining 
predictors, and RFE removes the predictors with the 
lowest contributions to the model. This procedure 
continues until the feature subset is refined to 15 features 
(K_FINAL). Through sequential filtering and wrapper-
based refinement, the hybrid method produces a 
compact, classifier-aligned feature subset. The hybrid 
algorithm is summarized in the pseudocode shown in 
Table 6. 

Table 6. Algorithm 3 

Hybrid (SelectKBest+RFE) 

1. BEGIN 

2. Dataset = load_csv(FOLDER_PATH) 
3. (X, y) = split_features_and_target(Dataset) 
4. X = impute_median(X) 
5. skb = SelectKBest(score_func=mutual_information, 

k=K_FIRST) 
6. X_skb = skb.fit_transform(X, y) 
7. Selected_SKB = skb.get_support_indices() 
8. base_model = RandomForest(n_estimator=200, 

class_weight=balanced, random_state=42) 

9. rfe = RFE(estimator=base_model, 

n_selected_features=K_FINAL, step_size=0.1) 

10. X_hybrid = rfe.fit_transform(X_skb, y) 

11. Selected_RFE_local = rfe.get_support_indices() 

12. Selected_Hybrid = map_indices(Selected_SKB, 

Selected_RFE_local) 

13. OUTPUT Selected_Hybrid, X_hybrid 
14. END  

 

 

 

Fig 3. Random Forest Model [30] 
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G. Random Forest 

The Random Forest (RF) model represents an ensemble-
based algorithm that constructs numerous decision trees, 
each one trained independently with bootstrap sampling 
and random feature selection to promote model diversity. 
The overall prediction is produced using a majority-vote 
mechanism that aggregates the outputs across the 
ensemble trees, which enhances its overall generalization 
capacity and reduces the likelihood of overfitting [22]. RF 
is also well regarded for its robustness in handling high-
dimensional data, missing values, and outliers, while 
maintaining the ability to capture nonlinear feature 
interactions [31]. Within each tree, an impurity measure is 
used to select the optimal feature split, with the Gini Index 
being a standard metric [32]. The Gini impurity for a 
dataset D is expressed as Eq. (2) [22]. 

𝐺𝑖𝑛𝑖(𝐷) = 1 − ∑ 𝑝𝑖
2

𝑚

𝑖=1

 (2) 

where 𝑝𝑖 represents the proportion among the samples 

belonging to the i-th class, and m denotes the number of 
classes. When a node 𝐾 is divided into two subgroups 𝐷1 

and 𝐷2, containing 𝑇1 and 𝑇2, samples respectively, the 

total impurity at that node is computed as Eq. (3) [22]. 

𝑇𝑜𝑡𝐺𝑖𝑛𝑖(𝐾) =  
𝑇1

𝑇
𝐺𝑖𝑛𝑖(𝐷1) +

𝑇2

𝑇
𝐺𝑖𝑛𝑖(𝐷2) (3) 

with 𝑇 indicating the overall count of samples at the node 

𝐾. A smaller impurity value reflects a more effective split, 

thereby supporting improved classification performance in 
the Random Forest model. 

In this study, RF is instantiated via the scikit-learn 
library with n_estimators = 200, class_weight = 
“balanced”, and random_state = 42, while all other 
structural hyperparameters, such as max_depth or 
min_samples_split, remain at their default values. This 
setup provides a robust yet sufficiently general baseline 
without relying on extensive hyperparameter optimization, 
thereby allowing the investigation to focus on the 
comparative performance of the feature-selection 
techniques. The identical RF configuration is also adopted 
as the base estimator within the RFE procedure to 
maintain methodological consistency between the 
wrapper-based selection process and the final 
classification model. The architecture of the Random 
Forest model employed in this study is shown in Fig 3 [30]. 

H. Extra Trees 

The Extra Trees (ET) model, originally proposed by Pierre 
Geurts et al. (2006) [33], represents an advancement of 
the traditional Decision Tree model. Unlike Random 
Forest, which depends on bootstrap sampling, Extra 
Trees generates an ensemble of unpruned decision trees 
by leveraging the entire training dataset and introducing 
greater randomness in both feature-selection and the 
determination of split points at each node. This 
heightened randomness promotes the formation of more 
heterogeneous trees and reduces correlations across the 
ensemble, which in turn boosts the model’s generalization 
performance and improves computational efficiency. The 
algorithm is also known for its resilience to overfitting and 
outliers, as well as its capability to process high-

dimensional datasets that exhibit nonlinear interactions 
among features. For these reasons, Extra Trees is 
employed in this study  for its stability, rapid training, and 
its balanced trade-off between accuracy and efficiency 
[34]. To determine each split, the algorithm samples a 
random threshold 𝑡𝑗 for feature 𝑗 from a uniform 

distribution, as formally defined in Eq. (4) [33]. 

𝑡𝑗 ~ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(𝑎𝑗 , 𝑏𝑗) (4) 

Each threshold produces a pair of candidate splits, which 
are assessed based on the reduction in node impurity, as 
formally defined in Eq. (5) [33]. 

∆𝐼(𝑠) = 𝐼(𝐷) − (
𝑇1

𝑇
𝐼(𝐷1) +

𝑇2

𝑇
𝐼(𝐷2)) (5) 

Where 𝐼 denotes the impurity measure, and 𝑇1, 𝑇2, and 𝑇 

represent the number of instances in the resulting 
subsets. 

 

In this study, ET is configured using n_estimators = 
300, random_state = 42, and n_jobs = -1 to leverage 
parallel processing, while all remaining hyperparameters 
retain their scikit-learn default values. Class weighting is 
applied when available to help counteract the substantial 
label imbalance present in the NASA MDP datasets. As 
with the Random Forest configuration, the model is not 
subjected to extensive hyperparameter tuning. Instead, a 
robust and stable baseline setup is used to ensure that 
any observed performance differences arise primarily 
from the feature-selection techniques rather than from 
variations driven by aggressive hyperparameter 
optimization. The architecture of the Extra Trees model 
employed in this study is shown in Fig 4 [35]. 

I. Bagging (Decision Tree) 

The Bagging (Bootstrap Aggregating) algorithm, which 
utilizes a Decision Tree as its base estimator, represents 
a type of ensemble-based method designed to enhance 
classification accuracy and model stability by effectively 
lowering variance and minimizing overfitting. Introduced 
by Breiman (1996) [36], the method generates multiple 
training subsets using bootstrap sampling, random 
sampling with replacement, and trains an independent 
Decision Tree on each subset. Each model contributes an 
individual prediction, and the overall output is then 
produced through a majority-vote strategy for 
classification or by mean aggregation for regression. 
Through this aggregation mechanism, Bagging 
consistently delivers more robust and reliable 
performance than a single standalone model [37] [38]. 

 

Fig 4. Extra Trees Model [35] 
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In this study, Bagging is implemented using scikit-
learn’s BaggingClassifier, employing a Decision Tree-
based learner configured with class_weight = “balanced” 
and random_state = 42. The ensemble comprises 200 
estimators, while all other parameters, such as 
max_depth or min_samples_split, are kept at their default 
settings. This configuration is selected to enhance 
variance reduction and mitigate the effects of class 
imbalance, while deliberately avoiding extensive 
hyperparameter tuning that might interfere with the 
comparative evaluation of the filter-based, wrapper-
based, and hybrid feature-selection approaches. The 
workflow of the Bagging method implemented in this study 

is shown in Fig 5 [39]. 

J. Evaluation 

Performance evaluation in this study adopts Stratified 10-
Fold Cross-Validation with the Area Under the Curve 
(AUC) as the primary metric. A stratified 10-fold CV is 
selected because it offers a well-established trade-off 
between bias and variance in estimating generalization 
performance while maintaining a reasonable 
computational cost across the twelve heterogeneous 
NASA MDP datasets. Compared with smaller fold settings 
such as 3-fold or 5-fold, the 10-fold configuration provides 
more stable performance estimates without excessively 
increasing run time. Stratification further ensures that 
each fold approximately preserves the original ratio 
between defective and non-defective modules, which is 
crucial under class-imbalanced conditions frequently 
observed in SDP datasets. 

AUC is used as the main evaluation criterion; it is 
insensitive to class proportions and captures the model’s 
ability to rank defective modules higher than non-
defective ones across all possible decision thresholds 
[40]. This threshold-independent property makes AUC 
more informative than overall accuracy when the positive 
(defect) class is in the minority. AUC is computed by 
measuring the area beneath the Receiver Operating 
Characteristic (ROC) curve, which depicts the balance 
between the True Positive Rate (TPR) and the False 
Positive Rate (FPR). The resulting metric ranges from 0 
to 1, with higher values indicating stronger discriminative 
capability, whereas lower values indicate limited 
predictive performance [41]. The TPR and FPR metrics 
follow standard definitions commonly adopted in machine 
learning research, as expressed in Eq. (6) and Eq. (7) 
[42]. 

TPR =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (6) 

FPR =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 (7) 

Mathematically, AUC is expressed as the integral of the 
ROC curve, as expressed in Eq. (8) [42]. 

𝐴𝑈𝐶 = ∫ 𝑇𝑃𝑅(𝐹𝑃𝑅)𝑑(𝐹𝑃𝑅)
1

0

 (8) 

This formulation provides an overall indicator of how well 

the model can consistently distinguish between the two 

classes. The evaluation excludes classifiers trained on the 

full feature set, as the study focuses on comparing filter-

based, wrapper-based, and hybrid feature-selection 

strategies rather than benchmarking untuned classifier 

performance. Including a no-feature-selection baseline 

would introduce confounding factors unrelated to 

dimensionality reduction and reduce methodological 

coherence. To complement predictive performance, 

computational cost is also measured by cross-validation 

execution time and peak memory usage, providing 

practical insight into the trade-offs associated with the 

higher complexity of wrapper and hybrid approaches. For 

each configuration and dataset, Stratified 10-Fold CV 

produces the mean of AUC, along with Average Accuracy 

(ACC), Precision, Recall, and F1 as secondary metrics. 

Per-dataset scores are averaged to obtain single 

summary values, and AUC results are further aggregated 

across the twelve datasets to enable cross-method 

comparison. The algorithm for the final model evaluation 

is summarized in the pseudocode presented in Table 7. 

III. Results 

This study is structured into three primary stages 
designed to systematically examine how different 
feature-selection strategies affect the performance 
exhibited by software-defect prediction models. The 
first stage employs the filter-based SelectKBest 
(SKB) method, which identifies the most relevant 
features using mutual information scores relative to 
the target label. The second stage applies the 
wrapper-based Recursive Feature Elimination 
(RFE) approach, where features with the lowest 
contribution to model performance are iteratively 
removed until an optimal subset is obtained. The 
final stage adopts a hybrid strategy that integrates 
SKB and RFE, beginning with statistical filtering 
through SKB, followed by RFE-based refinement to 
account for inter-feature dependencies within the 
classification model. 

Table 7. Algorithm 4 

Model Evaluation 

1. BEGIN 
2. Classifiers = {RandomForest, ExtraTrees, 

Bagging(DT)} 
3. For each CSV in FOLDER_PATH: 

3.1 Dataset = load_csv(CSV) 

3.2 (X, y) = split_features_and_target(Dataset) 

 3.3 X = impute_median(X) 

 

Fig 5. Flowchart of the bagging method [39] 
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 3.4 cv = StratifiedKFold(n_splits = 10) 

 3.5 For each clf in Classifiers: 

a) Pipe_SKB = [Imputer → SelectKBest(MI, 
k=K_FINAL) → clf] 

b) Pipe_RFE = [Imputer → RFE(base RF, 
n=K_FINAL, step=0.1) → clf] 

c) Pipe_Combo = [Imputer → 
SelectKBest(MI, 
k=max(K_FIRST,K_FINAL)) → RFE(base 
RF, n=K_FINAL) → clf] 

 3.7 For each Pipeline in {SKB, RFE, Combo}: 

a) StartTimer() and StartMemoryMonitor() 
b) Scores = cross_validate(Pipeline, X, y, cv, 

metrics={AUC, ACC, PREC, REC, F1}) 
c) Time_sec = StopTimer() 
d) PeakMem_MB = StopMemoryMonitor() 
e) Append {Dataset, clf, method, mean 

(AUC, ACC PREC, REC, F1), Time_sec, 
PeakMem_MB, K_FINAL, K_FIRST} to 
SummaryTable 

4. Save SummaryTable = 
“SDP_results_summary.csv” 

5. END 

 

This workflow offers a structured foundation for 
comparing the strengths of each method. Model 
evaluation is performed through Stratified 10-Fold Cross-
Validation to maintain balanced distributions between 
defective and non-defective instances across folds. The 
outcomes of various combinations involving feature-
selection techniques and tree-based classification 
algorithms are summarized in Table 8, which reports Area 
Under the Curve (AUC) metric values for the NASA MDP 
data collections (CM1-PC5). The first column lists the 
method model combinations, while the subsequent 
columns present their corresponding AUC scores. These 
results serve as the basis for assessing the influence of 
each feature-selection approach on predictive 
performance across datasets with varying characteristics. 

Across all evaluated configurations, the wrapper-
based and hybrid feature-selection methods tend to 
produce more consistent performance trends on the 
NASA MDP datasets, while the filter-only SKB method 
exhibits higher sensitivity to variations among datasets. 
Although each technique achieves competitive results 
with the tree-based classifiers, RFE consistently 
demonstrates marginally superior predictive performance, 
especially when used in conjunction with the Extra Trees 
(ET) model. These findings suggest that RFE is 
particularly adept at identifying feature subsets that 
complement the inductive behavior of tree-based learning 
algorithms. 

Across several datasets, the three methods maintain 
comparable predictive performance, as reflected in AUC 
values ranging from 0.60 to 0.93. Datasets such as PC1 
and PC4 exhibit high AUC scores (≥ 0.90), indicating that 
the models effectively capture feature patterns strongly 
associated with software defects. Conversely, datasets 
such as MC2 exhibit noticeably lower AUC values (≤ 
0.70), which may stem from class imbalance or weak 
correlations between the available features and the target 
variable. These disparities highlight how dataset-specific 

properties influence the sensitivity of feature-selection 
methods. Viewed collectively, the experimental outcomes 
reported in Table 8, the distributional behaviors depicted 
in Fig. 6, and the average AUC values presented in Fig. 7 
clearly indicate that feature-selection exerts a significant  

influence on classification performance in SDP. These 
findings highlight the critical role of identifying suitable 
feature subsets to ensure stable and dependable 
predictive accuracy across datasets that differ in both 
structural composition and statistical characteristics. 

Fig 6 presents the AUC distribution across the 12 
NASA MDP datasets. The boxplot highlights clear 
distinctions in consistency among the nine evaluated 
configurations, with RFE+Bagging(DT) producing the 

 

 

Fig 6. Boxplot of AUC Scores 
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Fig 7. Average AUC Values 
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most compact distribution, indicating superior stability. 
The other wrapper-based and hybrid approaches also 
maintain relatively consistent patterns, whereas the filter-
based (SKB) models exhibit broader variation and 
heightened sensitivity to dataset-specific characteristics. 
Overall, the results confirm that wrapper and hybrid 
feature-selection strategies deliver more robust and 
stable performance compared to the filter-only approach.    
Fig 7 offers a comparative overview of the average AUC 
values across the evaluated feature selection strategies. 
Among all combinations being assessed, RFE paired with 
Extra Trees yields the greatest mean AUC with a score of 
0.7855, closely trailed by SelectKBest+RFE+Extra Trees 
(0.7809) and SelectKBest+Extra Trees (0.7776). Despite 
the narrow gap between these results, all methods 
demonstrate consistently competitive performance across 
the NASA MDP datasets. Nonetheless, the leading 
performance of the RFE+Extra Trees configuration 
reinforces the observation that wrapper-based iterative 
elimination is particularly effective in identifying salient 
feature subsets, thereby improving the model’s 

discriminative capability in distinguishing defective from 
non-defective software modules. Fig 8 reports the 
average accuracy achieved by the evaluated feature-
selection techniques. Among the tested configurations, 

SelectKBest+RFE combined with Random Forest attains 
the highest accuracy (0.8569), followed closely by 
SelectKBest+RFE with Extra Trees (0.8567) and RFE 
with Extra Trees (0.8553). Although accuracy is not 
emphasized as the primary metric due to the inherent 
class imbalance present in the datasets, the narrow 
margin between results indicates that the methods exhibit 
comparable capability in modeling overall predictive 
patterns. The slight performance edge of the hybrid 
approach reinforces the notion that integrating filter-based 
preselection with wrapper-based iterative refinement can 
yield a more effective and computationally efficient 
feature-selection process. Fig 9 compares the average 
precision achieved by the evaluated feature-selection 
strategies. The hybrid SelectKBest+RFE approach 
attains the highest precision across all classifiers, 
providing noticeable improvements relative to both the 
individual filter-based and wrapper-based methods. 
Among the classifiers, Extra Trees consistently records 
the strongest precision performance, reaching 0.4458 
when paired with the hybrid strategy. These outcomes 
demonstrate that integrating filter and wrapper relevance 
assessments is particularly effective in minimizing false 

 

Fig 8. Average Accuracy Values 
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Fig 9. Average Precision Values 
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Table 8. AUC for Tree-Based Classifying Models using Different Feature Selection Methods 

Classifier 
Dataset 

CM1 JM1 KC1 KC3 MC1 MC2 MW1 PC1 PC2 PC3 PC4 PC5 

SKB+ET 0.6944 0.7050 0.7299 0.7050 0.8769 0.6638 0.6950 0.8997 0.8183 0.8208 0.9313 0.7907 

SKB+RF 0.6753 0.6996 0.7159 0.7152 0.8585 0.6228 0.6799 0.8709 0.7955 0.8210 0.9359 0.7834 

SKB+Bagging(DT) 0.7197 0.7023 0.7145 0.7610 0.8555 0.6522 0.7483 0.8846 0.7550 0.8151 0.9241 0.7866 

RFE+ET 0.6833 0.7070 0.7321 0.7390 0.8758 0.7088 0.7034 0.9019 0.8291 0.8209 0.9327 0.7921 

RFE+RF 0.7143 0.7022 0.7216 0.7015 0.8279 0.6303 0.7428 0.8833 0.8075 0.8168 0.9298 0.7926 

RFE+Bagging(DT) 0.7314 0.7021 0.7193 0.7199 0.8215 0.6584 0.7380 0.8853 0.6942 0.8206 0.9177 0.7842 

SKB+RFE+ET 0.6630 0.7070 0.7321 0.7189 0.8948 0.6412 0.7270 0.9070 0.8210 0.8269 0.9354 0.7962 

SKB+RFE+RF 0.7011 0.7022 0.7216 0.7091 0.8287 0.6034 0.7029 0.8784 0.7878 0.8164 0.9351 0.7859 

SKB+RFE+Bagging(DT) 0.7081 0.7021 0.7193 0.7185 0.8501 0.6591 0.7568 0.8771 0.7410 0.8232 0.9221 0.7843 
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positives, thereby enhancing the model’s confidence in 
identifying defective modules. The results further show 
that while RFE offers an improvement over SelectKBest, 

the hybrid method yields the most consistent and superior 
precision overall.  Fig. 10 presents the average recall 
results for all classifier and feature-selection 
combinations. Although recall values remain modest due 
to the pronounced class imbalance in the NASA MDP 
datasets, the hybrid SelectKBest+RFE method 
consistently yields the strongest performance. Extra 
Trees achieves the highest recall of 0.2119 under this 
configuration, with Random Forest and Bagging 
performing similarly. The performance gains observed 
from SelectKBest to RFE and then to the hybrid approach 
indicate that iterative feature elimination helps retain 
features essential for detecting the minority (defect) class, 
thereby reducing false negatives. Despite the relatively 
small differences among methods, the hybrid strategy 
provides the most balanced capability for recovering 
defective modules across the datasets. 

Table 9. Wilcoxon Signed-Rank Test Comparing 
RFE+ET Against Other Configurations 

Method Comparison p-Value 
Significant 
(p < 0.05) 

RFE+ET vs SKB+ET 0.0327 Yes 

RFE+ET vs SKB+RFE+ET 0.8457 No 

RFE+ET vs RFE+RF 0.1294 No 

RFE+ET vs SKB+RF 0.0024 Yes 

RFE+ET vs SKB+RFE+RF 0.0161 Yes 

RFE+ET vs RFE+Bagging 0.0923 No 

RFE+ET vs SKB+Bagging 0.3804 No 

RFE+ET vs SKB+RFE+Bagging 0.1294 No 

 

Fig 11 presents the average F1-score for all feature-
selection strategies and classifiers. The hybrid 
SelectKbest+RFE approach achieves the highest 
performance, with Extra Trees reaching the highest score 
of 0.2747. These results show that the hybrid method 
reduces both false positives and false negatives more 
effectively than the standalone techniques. Although 
classifier differences are modest, Extra Trees provides 
the most consistent gains, reinforcing its suitability for 
feature-selection-based SDP. Overall, the F1 results 
confirm the benefit of integrating filter and wrapper 
mechanisms to produce more reliable and discriminative 
feature subsets. 

The results presented in Table 9 show that RFE+ET 
delivers statistically significant gains over SKB+ET, 
SKB+RF, and the hybrid SKB+RFE+RF (p < 0.05), 
indicating that its performance advantage is unlikely to be 
due to random variation. In contrast, its comparisons with 
SKB+RFE+ET, RFE+RF, and their Bagging-based 
configurations yield non-significant differences (p > 0.05), 
reflecting largely comparable performance among these 
methods. Collectively, these findings suggest that the 
strength of RFE+ET is most evident when evaluated 
against filter-based techniques and hybrid approaches 
that employ Random Forest. 

Table 10. Average Computational Cost 

Method Runtime (sec) PeakMem (MB) 

SKB 18.01 0.993 

RFE 76.42 0.997 

SKB+RFE 63.48 1.003 

 

Table 10 summarizes the average computational cost 
of the evaluated feature-selection methods. SKB remains 
the most efficient option, exhibiting the lowest runtime and 
memory usage across all datasets and classifiers. 
Conversely, RFE and the hybrid SKB+RFE configuration 
impose considerably higher computational demands due 
to their iterative elimination processes, with RFE showing 
the greatest runtime overhead. Memory usage is 
relatively uniform across methods, indicating that the 
dominant source of cost differences lies in time complexity 
rather than memory consumption. Overall, the results 
highlight an important practical trade-off, although RFE-

 

Fig 10. Average Recall Values 
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Fig 11. Average F1-score 
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based strategies can deliver improved predictive 
performance, they do so at the expense of substantially 
greater computational cost when compared to the more 
resource-efficient SKB. 

 

IV. Discussion 

The AUC results in Table 8 and Fig 7 show that the 
RFE+Extra Trees configuration delivers the highest 
average AUC of 0.7855, followed by SKB+RFE+ET 
(0.7809) and SKB+ET (0.7776). Dataset-level findings 
further support this pattern: the SKB+RFE+ET method 
achieves an AUC of 0.8948 on MC1, with similarly strong 
performance on PC1 and PC4. In contrast, the smaller 
performance gaps observed in KC3 and MC2 suggest that 
the influence of feature-selection strategies varies across 
datasets. Moreover, the variability analyses in Fig. 6 
demonstrate that wrapper and hybrid approaches tend to 
produce more stable AUC distributions compared to filter-
only techniques, with RFE+Bagging(DT) showing the 
tightest interquartile range. 

The effectiveness of RFE+Extra Trees can be 
explained by the complementary strengths of the two 
components. Extra Trees employs a high degree of 
randomization during node splitting, enabling broader 
exploration of the feature space and reducing the risk of 
overfitting. RFE subsequently removes low-importance 
features based on model-derived importance scores, 
gradually refining the feature subset toward the most 
discriminative attributes. This synergy enhances noise 
tolerance and reduces redundancy characteristics, 
particularly advantageous for the high-dimensional NASA 
MDP datasets. Although the hybrid SKB+RFE benefits 
from an initial filter stage before wrapper refinement, its 
discriminative ability remains slightly below that of pure 
RFE. 

Class imbalance also plays a pivotal role in shaping 
model performance, especially in datasets like MC1 and 
PC2. Filter-based methods may inadvertently emphasize 
majority-class patterns, while RFE can yield unstable 
importance estimates when defective samples are limited. 
Although stratified cross-validation and class weighting 
help alleviate these issues, recall scores remain low, 
which is expected under severe imbalance. Accuracy 
results in Fig 8 indicate that the classifiers still capture 
broad predictive patterns effectively; however, AUC 
remains the more reliable metric for imbalanced data. The 
precision scores in Fig. 9 show that the hybrid SKB+RFE 
configuration achieves the highest average precision, with 
Extra Trees achieving 0.4458. Consistent recall and F1 
patterns in Fig 10 and Fig 11 reinforce the conclusion that 
the hybrid method enhances minority-class detection, 
with Extra Trees again demonstrating the most stable 
performance. 

Significance test in Table 9 further validates findings. 
RFE+Extra Trees achieves statistically significant 
improvements over SKB+ET, SKB+RF, and 
SKB+RFE+RF (p < 0.05), while performing comparably to 
SKB+RFE+ET and RFE+RF. Table 10 introduces an 
additional practical consideration: SKB is the most 
computationally efficient technique, whereas RFE and 

SKB+RFE require substantially higher runtimes due to 
iterative elimination. These results underscore the 
importance of balancing predictive benefits with 
computational cost, particularly in environments requiring 
rapid model updates. 

 

Table 11. Comparison of AUC Findings with Previous 
Studies 

Study Method Avg. AUC 

Suntoro et 
al. [10] 

AWEIG + AdaCost + NB 0.752 

Aryanti et 
al. [13] 

RF + RFE, Boruta, Grid 
Search + Copeland 

0.749 

Herteno et 
al. [43] 

RF + Correlation 0.5389 

Our RFE + Extra Trees 0.7855 

 

Table 11 places the present findings within the context 
of previous studies on software defect prediction. Suntoro 
et al. employed an AWEIG combined with AdaCost and 
Naïve Bayes to address class imbalance, achieving 
competitive performance under imbalanced conditions. 
Aryanti et al. proposed a more complex pipeline 
combining Random Forest with RFE, Boruta, Grid 
Search, and the Copeland ranking strategy, highlighting 
the benefits of ensemble feature-selection and 
hyperparameter optimization. Herteno et al. investigated 
correlation-based feature selection integrated with 
Random Forest classifiers, demonstrating the 
effectiveness of relevance-based filtering in reducing 
redundant features. Compared to these approaches, the 
proposed RFE+Extra Trees configuration achieves a 
higher AUC value (0.7855), indicating improved 
discriminative capability. This performance advantage 
stems from Extra Trees’ high-randomization splitting 
strategy coupled with RFE’s iterative refinement, which 
together yield more stable and discriminative feature 
subsets across a wide range of datasets. 

Despite these encouraging results, several limitations 
must be acknowledged. The models were trained with 
fixed hyperparameters, and no systematic tuning was 
performed, which may affect model stability. The 
evaluation was limited to NASA MDP datasets, and 
advanced balancing strategies beyond class weighting 
were not employed, thereby increasing the risk of 
overfitting on smaller or more imbalanced datasets. 
Future studies should incorporate systematic 
hyperparameter optimization, experiments on larger and 
more diverse datasets, and advanced oversampling 
methods such as SMOTE or ADASYN. Additionally, 
exploring evolutionary or deep learning-based feature-
selection approaches and including broader model 
families beyond tree-based classifiers may provide 
deeper insights into feature importance, scalability, and 
generalizability across different software development 
contexts. 

From an applied perspective, the strong performance 
of RFE+Extra Trees offers practical value for software 
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quality assurance workflows. The refined feature subset 
can be embedded into continuous integration pipelines to 
automate risk scoring for newly modified code modules, 
enabling QA teams to prioritize high-risk components and 
allocate testing resources more efficiently. However, the 
higher computational cost associated with RFE warrants 
careful consideration in large-scale or frequently updated 
systems. Overall, the results indicate that substantial 
performance improvements can be achieved without 
relying on complex ranking aggregation mechanisms, 
laying a strong foundation for developing more efficient 
and adaptive SDP pipelines. 

 

V. Conclusion 

This study conducts a comparative assessment of three 
feature-selection techniques: SelectKBest (SKB), 
Recursive Feature Elimination (RFE), and their combined 
SelectKBest+RFE variant to examine their influence on 
SDP models using the NASA MDP datasets. In contrast 
to previous work that primarily emphasizes classifier 
variations, this study foregrounds the contribution of 
feature selection to predictive performance across three 
tree-based models: Random Forest (RF), Extra Trees 
(ET), and Bagging (Decision Tree/DT). The use of 
stratified 10-fold cross-validation, together with the AUC 
metric, ensures consistent and reliable evaluation across 
datasets with diverse characteristics and varying degrees 
of class imbalance. 

The experimental results indicate that the integration 
of RFE with the Extra Trees classifier produces the 
strongest predictive outcomes, attaining an average AUC 
of 0.7855 and outperforming both the SKB+RFE+ET and 
SKB+ET configurations. These findings highlight the 
effectiveness of iterative wrapper-based elimination 
guided by model-specific importance scores, which 
facilitates the selection of more stable and informative 
feature subsets. This advantage is particularly evident 
when combined with the Extra Trees algorithm's 
randomized structure. Additionally, the stability 
demonstrated by the RFE+Bagging (DT) configuration 
further supports the robustness of wrapper-based 
methods across heterogeneous datasets. 

Beyond predictive accuracy, the computational cost 
analysis underscores meaningful trade-offs among the 
examined methods. SKB consistently exhibits the lowest 
runtime and memory consumption, making it a practical 
choice when computational resources are limited. In 
contrast, RFE and the hybrid SKB+RFE approach incur 
markedly higher runtimes due to their iterative elimination 
processes. These observations suggest that while 
wrapper-based strategies can enhance predictive 
performance, they require substantially greater 
computational effort, which is an important consideration 
for deployment in large-scale or real-time software 
engineering settings. 

The study is restricted to the NASA MDP datasets and 
does not employ class-balancing techniques, or 
hyperparameter optimization. This design choice enables 
an isolated assessment of the intrinsic effects of feature-
selection methods without confounding influences from 

parameter tuning or additional preprocessing. Future 
work is encouraged to incorporate explicit data-level 
balancing methods such as SMOTE, ADASYN, or 
Random Under Sampling, along with hyperparameter 
optimization techniques, including Grid Search or 
Bayesian Optimization, to address class imbalance better 
and derive more refined model configurations. 

Overall, the findings confirm that pairing RFE with the 
Extra Trees classifier yields the strongest predictive 
performance, while the stability of RFE+Bagging(DT) and 
the efficiency of SKB illustrate meaningful trade-offs 
between accuracy and computational overhead. These 
insights provide a foundation for developing more 
adaptive, efficient, and reliable SDP frameworks in future 
research. 
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