
 Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics
 Homepage: https://ijeeemi.org/; Vol. 8, No. 1, pp. 1-16, February 2026

e-ISSN: 2656-8624

Corresponding author: Rudy Herteno, rudy.herteno@ulm.ac.id, Department of Computer Science, Faculty of Mathematics and Natural Science,
Banjarbaru, Indonesia.
Digital Object Identifier (DOI): https://doi.org/10.35882/ijeeemi.v8i1.294
Copyright © 2025 by the authors. Published by Jurusan Teknik Elektromedik, Politeknik Kesehatan Kemenkes Surabaya Indonesia. This work
is an open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0).

1

 RESEARCH PAPER OPEN ACCES

Comparative Study of Filter, Wrapper, and Hybrid
Feature Selection Using Tree-Based Classifiers for
Software Defect Prediction

Rahmayanti Rahmayanti , Rudy Herteno , Setyo Wahyu Saputro , Triando Hamonangan Saragih ,

and Friska Abadi

Department of Computer Science, Faculty of Mathematics and Natural Science, Lambung Mangkurat University, Banjarbaru, Indonesia

Abstract

Software defect prediction (SDP) is essential for improving software reliability
by enabling the early identification of modules that may contain defects before
the release stage. SDP commonly exhibits redundant or non-contributory
metrics, underscoring the need for feature selection to derive a more
informative subset. To address this problem, the present study investigates
and compares the effectiveness of three feature-selection strategies:
SelectKBest (SKB), Recursive Feature Elimination (RFE), and the hybrid
SKB+RFE, in enhancing the performance of tree-based classifiers on the NASA
Metrics Data Program (MDP) data collections. The study utilizes three
classification algorithms, namely Random Forest (RF), Extra Trees (ET), and
Bagging (Decision Tree), with Area Under the Curve (AUC) serving as the
primary metric for assessing model performance. Experimental results reveal
that the RFE and Extra Trees combination yields the top performance,
producing an average AUC of 0.7855. This is subsequently followed by the
SKB+RFE+ET configuration, which achieves an AUC of 0.7809, and SKB+ET at
0.7776. These findings demonstrate that iterative wrapper-based approaches
such as RFE can identify more relevant and effective feature subsets than filter
or hybrid strategies, with the RFE+Extra Trees configuration yielding the
strongest overall predictive performance and wrapper-based methods
exhibiting higher stability across heterogeneous datasets. Even without
hyperparameter tuning and relying solely on class-weighting rather than
explicit resampling techniques, the findings offer empirical insight into the
isolated influence of feature selection on predictive performance. Overall, the
study confirms that RFE combined with Extra Trees offers the strongest
predictive performance on NASA MDP data collections and forms a foundation
for developing more adaptive and robust models.

Paper History

Received Sept. 12, 2025
Revised Nov. 21, 2025
Accepted Dec. 21, 2025
Published Dec. 24, 2025

Keywords

SelectKBest;

Recursive Feature Elimination;

Tree-Based Classifiers;

Feature Selection;

Software Defect Prediction

Author Email

2211016120010@mhs.ulm.ac.id

rudy.herteno@ulm.ac.id

setyo.saputro@ulm.ac.id

triando.saragih@ulm.ac.id

friska.abadi@ulm.ac.id

I. Introduction

Software plays a fundamental role across modern
industrial sectors, including manufacturing, healthcare,
education, and transportation. Inadequate software
quality may trigger system failures, reduce reliability, and
lead to substantial losses. One essential measure to
ensure the software’s quality involves performing defect
prediction early within the software development lifecycle.
Software defect prediction (SDP) contributes significantly
to improving system reliability and lowering maintenance
costs by identifying modules that are likely to be defective
prior to release [1]. However, many software metric
datasets contain redundant or irrelevant features, which
can cause overfitting and degrade the performance of
classification models [2]. Consequently, feature selection
is a crucial step in identifying the most relevant subset of
features to support efficient and accurate predictive
modeling [3].

Feature selection methods in SDP are usually divided
into filter, wrapper, and hybrid approaches [4]. Filter
methods identify candidate features using statistical
measures such as correlation, information gain, or mutual
information without considering the underlying classifier.
Although they scale efficiently, their inability to capture
redundancy and complex feature interactions remains a
notable limitation. Wrapper methods, in contrast, assess
feature subsets by evaluating the classifier's
performance, allowing them to account for feature
dependencies but increasing computational demands and
the likelihood of overfitting. Hybrid techniques combine
these paradigms by applying a fast filter step to eliminate
irrelevant attributes before refining the selection using a
wrapper method, thereby balancing efficiency and
predictive performance [5].

Recent advances in feature-selection research have
introduced more sophisticated mechanisms. Deep
learning-based approaches leverage latent

https://ijeeemi.org/
https://portal.issn.org/resource/ISSN-L/2656-8624
mailto:rudy.herteno@ulm.ac.id
https://doi.org/10.35882/ijeeemi.v8i1.294
https://creativecommons.org/licenses/by-sa/4.0/
mailto:triando.saragih@ulm.ac.id
https://orcid.org/0009-0001-3414-9562
https://orcid.org/0000-0003-0637-8090
https://orcid.org/0009-0007-9250-7704
https://orcid.org/0000-0003-4346-3323
https://orcid.org/0000-0002-9449-8000

 Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics
 Homepage: https://ijeeemi.org/; Vol. 8, No. 1, pp. 1-16, February 2026

e-ISSN: 2656-8624

Corresponding author: Rudy Herteno, rudy.herteno@ulm.ac.id, Department of Computer Science, Faculty of Mathematics and Natural Science,
Banjarbaru, Indonesia.
Digital Object Identifier (DOI): https://doi.org/10.35882/ijeeemi.v8i1.294
Copyright © 2025 by the authors. Published by Jurusan Teknik Elektromedik, Politeknik Kesehatan Kemenkes Surabaya Indonesia. This work
is an open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0).

2

representations to model nonlinear feature interactions
[6], while attention-driven architectures assign relevance
scores through learned weighting strategies [7]. In
parallel, developments in automated machine learning
(AutoML) have enabled automated exploration of feature
subsets and model configurations using meta-learning
and search-based optimization methods [8]. Despite their
promise, these techniques typically necessitate
considerable computational effort and access to sizeable
training datasets, limiting their applicability to classical
benchmark datasets such as NASA MDP. For this reason,
the present study focuses on lightweight, interpretable,
and computationally feasible feature-selection strategies:
SelectKBest, RFE, and their hybrid integration, which
offer competitive predictive capability while
accommodating the practical constraints of real-world
SDP settings.

Numerous studies have employed these paradigms to
improve SDP performance. Sharma [9] compared eight
feature-selection techniques and found that wrapper-
based techniques, including the Recursive Feature
Elimination (RFE), demonstrated superior stability and
accuracy over simple filter-based approaches, achieving
an average AUC of 0.72. Similarly, Suntoro [10] reported
that ensemble strategies combining AWEIG and AdaCost
with Naïve Bayes produced an average AUC of 0.752 on
the NASA MDP dataset. Balogun [11] showed that a
multifilter-wrapper hybrid method achieved average AUC
values between 0.75 and 0.78 on NASA MDP datasets.
Other studies highlight the effectiveness of metaheuristic
and multi-wrapper approaches: Maulida [12]
demonstrated that a Firefly-based feature-selection
method increased AUC values up to 0.77 on the NASA
MDP datasets, while Aryanti [13] reported that the
combination of RFE, Boruta, and Custom Grid Search
with a Copeland ranking method achieved an AUC of
0.749, despite the higher computational overhead and
increased risk of overfitting.

Despite these developments, several research gaps
remain in the existing SDP literature. First, most studies
focus on a single category of feature-selection technique
and do not conduct systematic comparisons of filter-,
wrapper-, and hybrid-based approaches under consistent
experimental settings. Second, cross-dataset
performance stability remains underexplored, even
though the variability in feature dimensionality and class
imbalance across NASA MDP datasets poses substantial
challenges for generalization. As one of the most widely
utilized and diverse benchmark repositories, NASA MDP,
with its twelve heterogeneous modules, provides an
appropriate foundation for assessing the robustness of
feature-selection methods. Notably, Sharma [9]
conducted a multi-method comparison; however, the
evaluation covered only two NASA MDP datasets, thereby
limiting the breadth of the findings. Third, comparative
analyses involving tree-based classifiers such as Random
Forest, Extra Trees, and Bagging (Decision Tree) remain
limited, leaving the interplay between feature-selection
strategies and tree-based learning models insufficiently
understood. By evaluating three distinct feature-selection
paradigms across all twelve NASA MDP datasets and

three tree-based classifiers within a unified experimental
framework, this study directly addresses these limitations.
It provides a broader and more reliable comparative
analysis. Considering that NASA MDP datasets exhibit
high dimensionality and varying degrees of class
imbalance [10], rigorous validation procedures are
required. In this study, these challenges are addressed
using stratified 10-fold cross-validation to maintain a
balanced class distribution within each fold [14].

To close these gaps, this research conducts a
comparative evaluation of three feature-selection
strategies: SelectKBest (filter-based), Recursive Feature
Elimination (wrapper-based), and a combined
SelectKBest+RFE hybrid approach, applied to three tree-
based classification algorithms: Random Forest, Extra
Trees, and Bagging (Decision Tree). The evaluation is
performed on twelve NASA MDP datasets using Stratified
10-Fold Cross-Validation, with the Area Under the Curve
(AUC) employed as the primary metric, and Average
Precision, Recall, Accuracy (ACC), and F1 function as
supporting metrics.

This study primarily seeks to assess and compare the
efficacy of the three feature-selection approaches in
shaping the performance of tree-based software defect
prediction models, and to determine which method
achieves the best average performance across NASA
MDP datasets. By examining multiple datasets with
differing structures and class distributions, this
investigation provides empirical insights into how different
feature-selection strategies influence prediction quality
and performance stability in heterogeneous SDP
scenarios.

This study makes several significant contributions,
which are summarized as follows. First, it provides a
comprehensive comparative analysis of filter-based,
wrapper-based, and hybrid feature-selection paradigms
under a unified experimental framework involving twelve
NASA MDP datasets and multiple tree-based classifiers.
Second, it systematically evaluates the effectiveness of
these feature-selection strategies under class-
imbalanced conditions using Stratified 10-Fold Cross-
Validation, with AUC as the primary evaluation metric.
Third, the experimental results demonstrate that wrapper-
based approaches, particularly RFE, exhibit superior
capability in identifying relevant features for tree-based
classifiers, with the Extra Trees model achieving the
highest AUC performance among all evaluated
configurations.

II. Materials and Method

Fig 1 presents the overall procedural workflow underlying
the proposed study. The research incorporates three
feature-selection techniques: SelectKBest (SKB),
Recursive Feature Elimination (RFE), and the combined
SelectKBest+RFE method. The process begins with
collecting data from the NASA Metrics Data Program
(MDP), which consists of twelve software modules.
Following data acquisition, a preprocessing stage is
performed, including converting the target label to binary

https://ijeeemi.org/
https://portal.issn.org/resource/ISSN-L/2656-8624
mailto:rudy.herteno@ulm.ac.id
https://doi.org/10.35882/ijeeemi.v8i1.294
https://creativecommons.org/licenses/by-sa/4.0/

 Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics
 Homepage: https://ijeeemi.org/; Vol. 8, No. 1, pp. 1-16, February 2026

e-ISSN: 2656-8624

Corresponding author: Rudy Herteno, rudy.herteno@ulm.ac.id, Department of Computer Science, Faculty of Mathematics and Natural Science,
Banjarbaru, Indonesia.
Digital Object Identifier (DOI): https://doi.org/10.35882/ijeeemi.v8i1.294
Copyright © 2025 by the authors. Published by Jurusan Teknik Elektromedik, Politeknik Kesehatan Kemenkes Surabaya Indonesia. This work
is an open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0).

3

(0 or 1). The evaluation is then carried out using Stratified
10-Fold Cross-Validation to preserve the proportional
allocation of defect and non-defect class groups within
every fold. SelectKBest utilizes the mutual information
scoring function to assess the relevance of each feature
to the defect label. In contrast, RFE iteratively eliminates
features with minimal contribution until an optimal subset
is obtained. The SelectKBest+RFE hybrid approach
combines the advantages of both techniques by applying
mutual information-based filtering prior to RFE’s iterative
elimination process.

Building on this workflow, each pairing of feature-
selection method and classification model is assessed
with the Area Under the Curve (AUC) metric applied to
evaluate software defect prediction effectiveness. The
study systematically examines and contrasts the
performance of three feature-selection approaches on
tree-based software defect prediction models, aiming to
determine which method provides the highest average
performance across the NASA MDP datasets. Through
this comparative investigation, the study highlights the
influence of different feature-selection strategies on
prediction quality across datasets with diverse
characteristics.

In this study, the comparative assessment of feature-
selection techniques is purposefully confined to tree-
based classifiers, notably Random Forest (RF), Extra
Trees (ET), and Bagging with Decision Tree-based
learners. These ensemble models are commonly utilized
in SDP because they perform reliably on high-dimensional
code metrics, effectively capture nonlinear relationships,
and naturally accommodate heterogeneous feature
scales without requiring explicit normalization. They also
generate feature-importance measures that align with the
impurity-based criteria used in feature selection, thereby
strengthening the interpretability of the selected metrics.
Relative to kernel-based approaches such as Support
Vector Machines or neural network models, the selected
classifiers provide a practical balance between predictive
accuracy, computational efficiency, and model
transparency, an essential consideration when
experiments must be consistently executed across
multiple NASA MDP datasets. As a result, non-tree-based
models are excluded from the present study and are
identified as a direction for future research.

This study also highlights the importance of
maintaining performance stability across the NASA MDP
datasets, which differ considerably in class imbalance
levels and feature characteristics. To reinforce the model’s
generalization capability, all experiments were executed
uniformly across all twelve datasets. Through this
approach, the analysis becomes more comprehensive in
determining whether a given feature-selection technique
can sustain stable predictive performance across
datasets that vary in dimensionality, distribution patterns,
and noise levels. Accordingly, the study evaluates both
the contributions of the selected features and the
robustness of each method when confronted with the
heterogeneous characteristics of the NASA MDP
datasets.

A. Data Collection

The present research makes use of twelve datasets
provided by the NASA MDP D”, all of which are publicly
available at:
https://github.com/klainfo/NASADefectDataset/tree/mast
er. The NASA MDP collection (CM1-PC5) is widely
regarded as a benchmark source in SDP research and is
commonly utilized to construct and evaluate SDP models

[15]. Each dataset provides static code metrics at the
module level, where a module may correspond to a
method, function, or internal routine in the software
system [16]. The selection of these twelve datasets is
intended to capture a broad spectrum of scenarios and
levels of complexity associated with software defect
prediction.

Despite their extensive use, the NASA MDP datasets
exhibit several well-known challenges, particularly severe
class imbalance [17] and the presence of noisy or
irrelevant features [18]. Class imbalance is particularly
severe in several datasets, such as MC1 (1.8% defective
modules) and PC2 (2.2% defective modules), where
defective modules are extremely scarce. In contrast,
datasets such as MC2 (35.5%) and PC5 (27%) exhibit
more proportionate class distributions. Such disparities
have notable implications for machine-learning behavior,
influencing model sensitivity to minority classes, the
stability of feature-selection results, and the dependability
of performance metrics. Consequently, a clear
understanding of each dataset’s imbalance profile is vital
to ensure equitable and reliable model evaluation across
all experimental settings. A comprehensive summary of
the dataset characteristics used in the analysis is
presented in Table 1.

Fig 1. Study Workflow Diagram

https://ijeeemi.org/
https://portal.issn.org/resource/ISSN-L/2656-8624
mailto:rudy.herteno@ulm.ac.id
https://doi.org/10.35882/ijeeemi.v8i1.294
https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/klainfo/NASADefectDataset/tree/master
https://github.com/klainfo/NASADefectDataset/tree/master

 Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics
 Homepage: https://ijeeemi.org/; Vol. 8, No. 1, pp. 1-16, February 2026

e-ISSN: 2656-8624

Corresponding author: Rudy Herteno, rudy.herteno@ulm.ac.id, Department of Computer Science, Faculty of Mathematics and Natural Science,
Banjarbaru, Indonesia.
Digital Object Identifier (DOI): https://doi.org/10.35882/ijeeemi.v8i1.294
Copyright © 2025 by the authors. Published by Jurusan Teknik Elektromedik, Politeknik Kesehatan Kemenkes Surabaya Indonesia. This work
is an open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0).

4

Table 1. NASA-MDP Dataset Details

Datasets Attributes Instances
Non-
Defects

Defects
Defective
(%)

CM1 38 327 285 42 12.8

JM1 22 7720 6108 1612 20.9

KC1 22 1162 868 294 25.3

KC3 40 194 158 36 18.6

MC1 39 1952 1916 36 1.8

MC2 40 124 80 44 35.5

MW1 38 250 225 25 10

PC1 38 679 624 55 8.1

PC2 37 722 706 16 2.2

PC3 38 1053 923 130 12.3

PC4 38 1270 1094 176 13.9

PC5 39 1694 1236 458 27

Although several NASA MDP datasets contain
pronounced class imbalance, this study deliberately
excludes any resampling-based balancing methods. The
choice is made to ensure that the influence of the feature-
selection techniques may be objectively evaluated without
confounding effects arising from synthetic data generation
or modified class distributions. Instead, model-level class
weighting is applied where supported, and Stratified K-
Fold Cross-Validation is implemented to maintain the
original class proportions across folds. In this design, the
comparative analysis remains focused on the inherent
behavior and effectiveness of the feature-selection
strategies under naturally imbalanced conditions.

B. Preprocessing

The data preprocessing stage was carried out to ensure
that the dataset met the required standards of quality,
consistency, and cleanliness prior to model training. This
stage is essential for preparing raw data in order that it
can be handled efficiently by ML algorithms [19]. In this
study, several preprocessing steps were implemented.
The process began by removing non-predictive attributes,
such as the ID column, which serves solely as a unique
identifier and provides no information relevant to defect
labels [20].

Table 2. Before Preprocessing

id LOCK_BLANK BRANCH_OUT …
LOC

TOTAL
Defective

1 2 3 … 9 N

2 3 3 … 13 N

3 38 35 … 109 N

4 1 7 … 41 Y

… … … … … …

325 3 3 … 12 N

326 6 9 … 32 N

327 1 3 … 10 N

Subsequently, label encoding was used to transform the
categorical target variable into a numeric form, enabling
the model to interpret it appropriately [21]. Specifically,
across all datasets, the label ‘Y’ indicating a defective

module was transformed into ‘1’, whereas the label ‘N’
indicating a non-defective module was transformed into
‘0’. Examples of this label transformation are presented in
Table 2 and Table 3.

Table 3. Following Preprocessing

LOCK_BLANK BRANCH_OUT …
LOC

TOTAL
Defective

2 3 … 9 0

3 3 … 13 0

38 35 … 109 0

1 7 … 41 1

… … … … …

3 3 … 12 0

6 9 … 32 0

1 3 … 10 0

C. Stratified 10-Fold Cross-Validation

After completing the preprocessing stage to ensure data
cleanliness and quality, the study proceeded to the data
partitioning phase. At this stage, the Stratified 10-Fold
Cross-Validation method was applied, splitting the dataset
across ten folds while maintaining consistent proportions
between defect and non-defect categories within every
fold [22]. This method was chosen to address the
challenges posed by imbalanced class distributions,
where a purely random split may produce folds containing
very few or no samples from the minority class, potentially
introducing bias into the model performance assessment
[23]. As illustrated in Fig 2 [24], the stratified approach
ensures that every fold proportionally reflects the overall
data distribution. In each iteration, nine folds are used for
training, with the remaining fold serving as the evaluation
set; this cycle continues until each fold serves as the test
set [25].

D. SelectKBest

This present study adopts the SelectKBest (SKB)
technique, a filter-based feature-selection approach that
identifies the k highest-scoring features by evaluating
their quantitative relevance to the target variable. The
approach is selected for its computational efficiency and
straightforward implementation [26]. In this work, Mutual
Information (MI) serves as the scoring metric. Formally,
the MI between a feature X and the target class Y is
expressed as Eq. (1) [27].

Fig 2. Stratified K-Fold CV Scheme [24]

https://ijeeemi.org/
https://portal.issn.org/resource/ISSN-L/2656-8624
mailto:rudy.herteno@ulm.ac.id
https://doi.org/10.35882/ijeeemi.v8i1.294
https://creativecommons.org/licenses/by-sa/4.0/

 Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics
 Homepage: https://ijeeemi.org/; Vol. 8, No. 1, pp. 1-16, February 2026

e-ISSN: 2656-8624

Corresponding author: Rudy Herteno, rudy.herteno@ulm.ac.id, Department of Computer Science, Faculty of Mathematics and Natural Science,
Banjarbaru, Indonesia.
Digital Object Identifier (DOI): https://doi.org/10.35882/ijeeemi.v8i1.294
Copyright © 2025 by the authors. Published by Jurusan Teknik Elektromedik, Politeknik Kesehatan Kemenkes Surabaya Indonesia. This work
is an open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0).

5

𝐼(𝑋; 𝑌) = ∑ ∑ 𝑝(𝑥, 𝑦) log(
𝑝(𝑥, 𝑦)

𝑝(𝑥)𝑝(𝑦)
)

𝑦∈𝑌𝑥∈𝑋

 (1)

which quantifies the extent to which uncertainty about Y
diminishes when X is observed. A higher MI value
indicates a stronger dependency between the feature and
the target, including non-linear relationships that cannot
be captured by correlation-based metrics [28]. Using this
formulation, SKB ranks all available features and selects
the top k features as defined by the K_FINAL parameter.
The SKB algorithm is summarized in the pseudocode
shown in Table 4.

Table 4. Algorithm 1

SelectKBest (Mutual Information)

1. BEGIN
2. Dataset = load_csv(FOLDER_PATH)
3. (X, y) = split_features_and_target(Dataset)
4. X = impute_median(X)
5. skb = SelectKBest(score_func=mutual_information,

k=K_FINAL)
6. X_skb = skb.fit_transform(X, y)
7. SelectedFeatures = skb.get_support_indices()
8. OUTPUT SelectedFeatures, X_skb
9. END

E. Recursive Feature Elimination

In the wrapper-based feature-selection stage, this study
uses Recursive Feature Elimination (RFE), a wrapper
method that evaluates model performance as it
progressively removes the least informative features.
During each iteration, RFE orders all predictors according
to model-specific importance measures such as impurity-
based feature importance in tree-based classifiers and
discards those contributing minimally to predictive
accuracy. By relying on the model’s internal evaluation
rather than independent statistical measures, this iterative
procedure ensures that feature reduction is closely
aligned with the classifier’s learning behavior. RFE is
selected because it accommodates interactions among
features and adapts the selection process to the
characteristics of the underlying model [9] [29]. Through
this mechanism, the approach allows the production of a
highly representative and relevant feature subset relative
to filter-based methods. Given these advantages, RFE
offers a balanced trade-off between complexity and
performance, thereby serving as an effective feature
selection technique within the context of software defect
prediction [9]. Table 5 presents the pseudocode for the
RFE algorithm.

Table 5. Algorithm 2

Recursive Feature Elimination

1. BEGIN
2. Dataset = load_csv(FOLDER_PATH)
3. (X, y) = split_features_and_target(Dataset)
4. X = impute_median(X)
5. base_model = RandomForest(n_estimator=200,

class_weight=balanced, random_state=42)
6. rfe = RFE(estimator=base_model,

n_selected_features=K_FINAL, step_size=0.1)
7. X_rfe = rfe.fit_transform(X, y)
8. SelectedFeatures = rfe.get_support_indices()
9. OUTPUT SelectedFeatuers, X_rfe

10. END

F. Hybrid Feature Selection Strategy (SKB + RFE)

This study employs a hybrid feature-selection workflow
that integrates SelectKBest (SKB) with Recursive Feature
Elimination (RFE) to combine the strengths of filter-based
and wrapper-based techniques. The process begins with
SKB, which uses mutual-information-based univariate
scoring to select the top 25 features (K_FIRST) in
accordance with the study’s fixed experimental setup.
This initial step reduces dimensionality by discarding
features that exhibit low independent discriminative
capability. The resulting 25 features are then passed to
the RFE module, which evaluates inter-feature
relationships through an iterative, model-driven
elimination process. During each iteration, the tree-based
classifier generates importance rankings for all remaining
predictors, and RFE removes the predictors with the
lowest contributions to the model. This procedure
continues until the feature subset is refined to 15 features
(K_FINAL). Through sequential filtering and wrapper-
based refinement, the hybrid method produces a
compact, classifier-aligned feature subset. The hybrid
algorithm is summarized in the pseudocode shown in
Table 6.

Table 6. Algorithm 3

Hybrid (SelectKBest+RFE)

1. BEGIN

2. Dataset = load_csv(FOLDER_PATH)
3. (X, y) = split_features_and_target(Dataset)
4. X = impute_median(X)
5. skb = SelectKBest(score_func=mutual_information,

k=K_FIRST)
6. X_skb = skb.fit_transform(X, y)
7. Selected_SKB = skb.get_support_indices()
8. base_model = RandomForest(n_estimator=200,

class_weight=balanced, random_state=42)

9. rfe = RFE(estimator=base_model,

n_selected_features=K_FINAL, step_size=0.1)

10. X_hybrid = rfe.fit_transform(X_skb, y)

11. Selected_RFE_local = rfe.get_support_indices()

12. Selected_Hybrid = map_indices(Selected_SKB,

Selected_RFE_local)

13. OUTPUT Selected_Hybrid, X_hybrid
14. END

Fig 3. Random Forest Model [30]

https://ijeeemi.org/
https://portal.issn.org/resource/ISSN-L/2656-8624
mailto:rudy.herteno@ulm.ac.id
https://doi.org/10.35882/ijeeemi.v8i1.294
https://creativecommons.org/licenses/by-sa/4.0/

 Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics
 Homepage: https://ijeeemi.org/; Vol. 8, No. 1, pp. 1-16, February 2026

e-ISSN: 2656-8624

Corresponding author: Rudy Herteno, rudy.herteno@ulm.ac.id, Department of Computer Science, Faculty of Mathematics and Natural Science,
Banjarbaru, Indonesia.
Digital Object Identifier (DOI): https://doi.org/10.35882/ijeeemi.v8i1.294
Copyright © 2025 by the authors. Published by Jurusan Teknik Elektromedik, Politeknik Kesehatan Kemenkes Surabaya Indonesia. This work
is an open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0).

6

G. Random Forest

The Random Forest (RF) model represents an ensemble-
based algorithm that constructs numerous decision trees,
each one trained independently with bootstrap sampling
and random feature selection to promote model diversity.
The overall prediction is produced using a majority-vote
mechanism that aggregates the outputs across the
ensemble trees, which enhances its overall generalization
capacity and reduces the likelihood of overfitting [22]. RF
is also well regarded for its robustness in handling high-
dimensional data, missing values, and outliers, while
maintaining the ability to capture nonlinear feature
interactions [31]. Within each tree, an impurity measure is
used to select the optimal feature split, with the Gini Index
being a standard metric [32]. The Gini impurity for a
dataset D is expressed as Eq. (2) [22].

𝐺𝑖𝑛𝑖(𝐷) = 1 − ∑ 𝑝𝑖
2

𝑚

𝑖=1

 (2)

where 𝑝𝑖 represents the proportion among the samples

belonging to the i-th class, and m denotes the number of
classes. When a node 𝐾 is divided into two subgroups 𝐷1

and 𝐷2, containing 𝑇1 and 𝑇2, samples respectively, the

total impurity at that node is computed as Eq. (3) [22].

𝑇𝑜𝑡𝐺𝑖𝑛𝑖(𝐾) =
𝑇1

𝑇
𝐺𝑖𝑛𝑖(𝐷1) +

𝑇2

𝑇
𝐺𝑖𝑛𝑖(𝐷2) (3)

with 𝑇 indicating the overall count of samples at the node

𝐾. A smaller impurity value reflects a more effective split,

thereby supporting improved classification performance in
the Random Forest model.

In this study, RF is instantiated via the scikit-learn
library with n_estimators = 200, class_weight =
“balanced”, and random_state = 42, while all other
structural hyperparameters, such as max_depth or
min_samples_split, remain at their default values. This
setup provides a robust yet sufficiently general baseline
without relying on extensive hyperparameter optimization,
thereby allowing the investigation to focus on the
comparative performance of the feature-selection
techniques. The identical RF configuration is also adopted
as the base estimator within the RFE procedure to
maintain methodological consistency between the
wrapper-based selection process and the final
classification model. The architecture of the Random
Forest model employed in this study is shown in Fig 3 [30].

H. Extra Trees

The Extra Trees (ET) model, originally proposed by Pierre
Geurts et al. (2006) [33], represents an advancement of
the traditional Decision Tree model. Unlike Random
Forest, which depends on bootstrap sampling, Extra
Trees generates an ensemble of unpruned decision trees
by leveraging the entire training dataset and introducing
greater randomness in both feature-selection and the
determination of split points at each node. This
heightened randomness promotes the formation of more
heterogeneous trees and reduces correlations across the
ensemble, which in turn boosts the model’s generalization
performance and improves computational efficiency. The
algorithm is also known for its resilience to overfitting and
outliers, as well as its capability to process high-

dimensional datasets that exhibit nonlinear interactions
among features. For these reasons, Extra Trees is
employed in this study for its stability, rapid training, and
its balanced trade-off between accuracy and efficiency
[34]. To determine each split, the algorithm samples a
random threshold 𝑡𝑗 for feature 𝑗 from a uniform

distribution, as formally defined in Eq. (4) [33].

𝑡𝑗 ~ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(𝑎𝑗 , 𝑏𝑗) (4)

Each threshold produces a pair of candidate splits, which
are assessed based on the reduction in node impurity, as
formally defined in Eq. (5) [33].

∆𝐼(𝑠) = 𝐼(𝐷) − (
𝑇1

𝑇
𝐼(𝐷1) +

𝑇2

𝑇
𝐼(𝐷2)) (5)

Where 𝐼 denotes the impurity measure, and 𝑇1, 𝑇2, and 𝑇

represent the number of instances in the resulting
subsets.

In this study, ET is configured using n_estimators =
300, random_state = 42, and n_jobs = -1 to leverage
parallel processing, while all remaining hyperparameters
retain their scikit-learn default values. Class weighting is
applied when available to help counteract the substantial
label imbalance present in the NASA MDP datasets. As
with the Random Forest configuration, the model is not
subjected to extensive hyperparameter tuning. Instead, a
robust and stable baseline setup is used to ensure that
any observed performance differences arise primarily
from the feature-selection techniques rather than from
variations driven by aggressive hyperparameter
optimization. The architecture of the Extra Trees model
employed in this study is shown in Fig 4 [35].

I. Bagging (Decision Tree)

The Bagging (Bootstrap Aggregating) algorithm, which
utilizes a Decision Tree as its base estimator, represents
a type of ensemble-based method designed to enhance
classification accuracy and model stability by effectively
lowering variance and minimizing overfitting. Introduced
by Breiman (1996) [36], the method generates multiple
training subsets using bootstrap sampling, random
sampling with replacement, and trains an independent
Decision Tree on each subset. Each model contributes an
individual prediction, and the overall output is then
produced through a majority-vote strategy for
classification or by mean aggregation for regression.
Through this aggregation mechanism, Bagging
consistently delivers more robust and reliable
performance than a single standalone model [37] [38].

Fig 4. Extra Trees Model [35]

https://ijeeemi.org/
https://portal.issn.org/resource/ISSN-L/2656-8624
mailto:rudy.herteno@ulm.ac.id
https://doi.org/10.35882/ijeeemi.v8i1.294
https://creativecommons.org/licenses/by-sa/4.0/

 Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics
 Homepage: https://ijeeemi.org/; Vol. 8, No. 1, pp. 1-16, February 2026

e-ISSN: 2656-8624

Corresponding author: Rudy Herteno, rudy.herteno@ulm.ac.id, Department of Computer Science, Faculty of Mathematics and Natural Science,
Banjarbaru, Indonesia.
Digital Object Identifier (DOI): https://doi.org/10.35882/ijeeemi.v8i1.294
Copyright © 2025 by the authors. Published by Jurusan Teknik Elektromedik, Politeknik Kesehatan Kemenkes Surabaya Indonesia. This work
is an open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0).

7

In this study, Bagging is implemented using scikit-
learn’s BaggingClassifier, employing a Decision Tree-
based learner configured with class_weight = “balanced”
and random_state = 42. The ensemble comprises 200
estimators, while all other parameters, such as
max_depth or min_samples_split, are kept at their default
settings. This configuration is selected to enhance
variance reduction and mitigate the effects of class
imbalance, while deliberately avoiding extensive
hyperparameter tuning that might interfere with the
comparative evaluation of the filter-based, wrapper-
based, and hybrid feature-selection approaches. The
workflow of the Bagging method implemented in this study

is shown in Fig 5 [39].

J. Evaluation

Performance evaluation in this study adopts Stratified 10-
Fold Cross-Validation with the Area Under the Curve
(AUC) as the primary metric. A stratified 10-fold CV is
selected because it offers a well-established trade-off
between bias and variance in estimating generalization
performance while maintaining a reasonable
computational cost across the twelve heterogeneous
NASA MDP datasets. Compared with smaller fold settings
such as 3-fold or 5-fold, the 10-fold configuration provides
more stable performance estimates without excessively
increasing run time. Stratification further ensures that
each fold approximately preserves the original ratio
between defective and non-defective modules, which is
crucial under class-imbalanced conditions frequently
observed in SDP datasets.

AUC is used as the main evaluation criterion; it is
insensitive to class proportions and captures the model’s
ability to rank defective modules higher than non-
defective ones across all possible decision thresholds
[40]. This threshold-independent property makes AUC
more informative than overall accuracy when the positive
(defect) class is in the minority. AUC is computed by
measuring the area beneath the Receiver Operating
Characteristic (ROC) curve, which depicts the balance
between the True Positive Rate (TPR) and the False
Positive Rate (FPR). The resulting metric ranges from 0
to 1, with higher values indicating stronger discriminative
capability, whereas lower values indicate limited
predictive performance [41]. The TPR and FPR metrics
follow standard definitions commonly adopted in machine
learning research, as expressed in Eq. (6) and Eq. (7)
[42].

TPR =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (6)

FPR =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 (7)

Mathematically, AUC is expressed as the integral of the
ROC curve, as expressed in Eq. (8) [42].

𝐴𝑈𝐶 = ∫ 𝑇𝑃𝑅(𝐹𝑃𝑅)𝑑(𝐹𝑃𝑅)
1

0

 (8)

This formulation provides an overall indicator of how well

the model can consistently distinguish between the two

classes. The evaluation excludes classifiers trained on the

full feature set, as the study focuses on comparing filter-

based, wrapper-based, and hybrid feature-selection

strategies rather than benchmarking untuned classifier

performance. Including a no-feature-selection baseline

would introduce confounding factors unrelated to

dimensionality reduction and reduce methodological

coherence. To complement predictive performance,

computational cost is also measured by cross-validation

execution time and peak memory usage, providing

practical insight into the trade-offs associated with the

higher complexity of wrapper and hybrid approaches. For

each configuration and dataset, Stratified 10-Fold CV

produces the mean of AUC, along with Average Accuracy

(ACC), Precision, Recall, and F1 as secondary metrics.

Per-dataset scores are averaged to obtain single

summary values, and AUC results are further aggregated

across the twelve datasets to enable cross-method

comparison. The algorithm for the final model evaluation

is summarized in the pseudocode presented in Table 7.

III. Results

This study is structured into three primary stages
designed to systematically examine how different
feature-selection strategies affect the performance
exhibited by software-defect prediction models. The
first stage employs the filter-based SelectKBest
(SKB) method, which identifies the most relevant
features using mutual information scores relative to
the target label. The second stage applies the
wrapper-based Recursive Feature Elimination
(RFE) approach, where features with the lowest
contribution to model performance are iteratively
removed until an optimal subset is obtained. The
final stage adopts a hybrid strategy that integrates
SKB and RFE, beginning with statistical filtering
through SKB, followed by RFE-based refinement to
account for inter-feature dependencies within the
classification model.

Table 7. Algorithm 4

Model Evaluation

1. BEGIN
2. Classifiers = {RandomForest, ExtraTrees,

Bagging(DT)}
3. For each CSV in FOLDER_PATH:

3.1 Dataset = load_csv(CSV)

3.2 (X, y) = split_features_and_target(Dataset)

 3.3 X = impute_median(X)

Fig 5. Flowchart of the bagging method [39]

https://ijeeemi.org/
https://portal.issn.org/resource/ISSN-L/2656-8624
mailto:rudy.herteno@ulm.ac.id
https://doi.org/10.35882/ijeeemi.v8i1.294
https://creativecommons.org/licenses/by-sa/4.0/

 Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics
 Homepage: https://ijeeemi.org/; Vol. 8, No. 1, pp. 1-16, February 2026

e-ISSN: 2656-8624

Corresponding author: Rudy Herteno, rudy.herteno@ulm.ac.id, Department of Computer Science, Faculty of Mathematics and Natural Science,
Banjarbaru, Indonesia.
Digital Object Identifier (DOI): https://doi.org/10.35882/ijeeemi.v8i1.294
Copyright © 2025 by the authors. Published by Jurusan Teknik Elektromedik, Politeknik Kesehatan Kemenkes Surabaya Indonesia. This work
is an open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0).

8

 3.4 cv = StratifiedKFold(n_splits = 10)

 3.5 For each clf in Classifiers:

a) Pipe_SKB = [Imputer → SelectKBest(MI,
k=K_FINAL) → clf]

b) Pipe_RFE = [Imputer → RFE(base RF,
n=K_FINAL, step=0.1) → clf]

c) Pipe_Combo = [Imputer →
SelectKBest(MI,
k=max(K_FIRST,K_FINAL)) → RFE(base
RF, n=K_FINAL) → clf]

 3.7 For each Pipeline in {SKB, RFE, Combo}:

a) StartTimer() and StartMemoryMonitor()
b) Scores = cross_validate(Pipeline, X, y, cv,

metrics={AUC, ACC, PREC, REC, F1})
c) Time_sec = StopTimer()
d) PeakMem_MB = StopMemoryMonitor()
e) Append {Dataset, clf, method, mean

(AUC, ACC PREC, REC, F1), Time_sec,
PeakMem_MB, K_FINAL, K_FIRST} to
SummaryTable

4. Save SummaryTable =
“SDP_results_summary.csv”

5. END

This workflow offers a structured foundation for
comparing the strengths of each method. Model
evaluation is performed through Stratified 10-Fold Cross-
Validation to maintain balanced distributions between
defective and non-defective instances across folds. The
outcomes of various combinations involving feature-
selection techniques and tree-based classification
algorithms are summarized in Table 8, which reports Area
Under the Curve (AUC) metric values for the NASA MDP
data collections (CM1-PC5). The first column lists the
method model combinations, while the subsequent
columns present their corresponding AUC scores. These
results serve as the basis for assessing the influence of
each feature-selection approach on predictive
performance across datasets with varying characteristics.

Across all evaluated configurations, the wrapper-
based and hybrid feature-selection methods tend to
produce more consistent performance trends on the
NASA MDP datasets, while the filter-only SKB method
exhibits higher sensitivity to variations among datasets.
Although each technique achieves competitive results
with the tree-based classifiers, RFE consistently
demonstrates marginally superior predictive performance,
especially when used in conjunction with the Extra Trees
(ET) model. These findings suggest that RFE is
particularly adept at identifying feature subsets that
complement the inductive behavior of tree-based learning
algorithms.

Across several datasets, the three methods maintain
comparable predictive performance, as reflected in AUC
values ranging from 0.60 to 0.93. Datasets such as PC1
and PC4 exhibit high AUC scores (≥ 0.90), indicating that
the models effectively capture feature patterns strongly
associated with software defects. Conversely, datasets
such as MC2 exhibit noticeably lower AUC values (≤
0.70), which may stem from class imbalance or weak
correlations between the available features and the target
variable. These disparities highlight how dataset-specific

properties influence the sensitivity of feature-selection
methods. Viewed collectively, the experimental outcomes
reported in Table 8, the distributional behaviors depicted
in Fig. 6, and the average AUC values presented in Fig. 7
clearly indicate that feature-selection exerts a significant

influence on classification performance in SDP. These
findings highlight the critical role of identifying suitable
feature subsets to ensure stable and dependable
predictive accuracy across datasets that differ in both
structural composition and statistical characteristics.

Fig 6 presents the AUC distribution across the 12
NASA MDP datasets. The boxplot highlights clear
distinctions in consistency among the nine evaluated
configurations, with RFE+Bagging(DT) producing the

Fig 6. Boxplot of AUC Scores

Model Configuration

A
U

C

0.5
0.55

0.6
0.65

0.7
0.75

0.8
0.85

0.9
0.95

1

SKB+ET SKB+RF

SKB+Bagging(DT) RFE+ET

RFE+RF RFE+Bagging(DT)

SKB+RFE+ET SKB+RFE+RF

SKB+RFE+Bagging(DT)

Fig 7. Average AUC Values

0.750

0.755

0.760

0.765

0.770

0.775

0.780

0.785

0.790

SelectKBest RFE SelectKBest+RFE

A
vg

. A
U

C

Feature Selection Method

Random Forest Extra Trees Bagging

https://ijeeemi.org/
https://portal.issn.org/resource/ISSN-L/2656-8624
mailto:rudy.herteno@ulm.ac.id
https://doi.org/10.35882/ijeeemi.v8i1.294
https://creativecommons.org/licenses/by-sa/4.0/

 Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics
 Homepage: https://ijeeemi.org/; Vol. 8, No. 1, pp. 1-16, February 2026

e-ISSN: 2656-8624

Corresponding author: Rudy Herteno, rudy.herteno@ulm.ac.id, Department of Computer Science, Faculty of Mathematics and Natural Science,
Banjarbaru, Indonesia.
Digital Object Identifier (DOI): https://doi.org/10.35882/ijeeemi.v8i1.294
Copyright © 2025 by the authors. Published by Jurusan Teknik Elektromedik, Politeknik Kesehatan Kemenkes Surabaya Indonesia. This work
is an open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0).

9

most compact distribution, indicating superior stability.
The other wrapper-based and hybrid approaches also
maintain relatively consistent patterns, whereas the filter-
based (SKB) models exhibit broader variation and
heightened sensitivity to dataset-specific characteristics.
Overall, the results confirm that wrapper and hybrid
feature-selection strategies deliver more robust and
stable performance compared to the filter-only approach.
Fig 7 offers a comparative overview of the average AUC
values across the evaluated feature selection strategies.
Among all combinations being assessed, RFE paired with
Extra Trees yields the greatest mean AUC with a score of
0.7855, closely trailed by SelectKBest+RFE+Extra Trees
(0.7809) and SelectKBest+Extra Trees (0.7776). Despite
the narrow gap between these results, all methods
demonstrate consistently competitive performance across
the NASA MDP datasets. Nonetheless, the leading
performance of the RFE+Extra Trees configuration
reinforces the observation that wrapper-based iterative
elimination is particularly effective in identifying salient
feature subsets, thereby improving the model’s

discriminative capability in distinguishing defective from
non-defective software modules. Fig 8 reports the
average accuracy achieved by the evaluated feature-
selection techniques. Among the tested configurations,

SelectKBest+RFE combined with Random Forest attains
the highest accuracy (0.8569), followed closely by
SelectKBest+RFE with Extra Trees (0.8567) and RFE
with Extra Trees (0.8553). Although accuracy is not
emphasized as the primary metric due to the inherent
class imbalance present in the datasets, the narrow
margin between results indicates that the methods exhibit
comparable capability in modeling overall predictive
patterns. The slight performance edge of the hybrid
approach reinforces the notion that integrating filter-based
preselection with wrapper-based iterative refinement can
yield a more effective and computationally efficient
feature-selection process. Fig 9 compares the average
precision achieved by the evaluated feature-selection
strategies. The hybrid SelectKBest+RFE approach
attains the highest precision across all classifiers,
providing noticeable improvements relative to both the
individual filter-based and wrapper-based methods.
Among the classifiers, Extra Trees consistently records
the strongest precision performance, reaching 0.4458
when paired with the hybrid strategy. These outcomes
demonstrate that integrating filter and wrapper relevance
assessments is particularly effective in minimizing false

Fig 8. Average Accuracy Values

0.844

0.846

0.848

0.850

0.852

0.854

0.856

0.858

SelectKBest RFE SelectKBest+RFE

A
cc

u
ra

cy

Feature Selection Method

Random Forest Extra Trees Bagging

Fig 9. Average Precision Values

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

SelectKBest RFE SelectKBest+RFE

P
re

ci
si

o
n

Feature Selection Method

Random Forest Extra Trees Bagging

Table 8. AUC for Tree-Based Classifying Models using Different Feature Selection Methods

Classifier
Dataset

CM1 JM1 KC1 KC3 MC1 MC2 MW1 PC1 PC2 PC3 PC4 PC5

SKB+ET 0.6944 0.7050 0.7299 0.7050 0.8769 0.6638 0.6950 0.8997 0.8183 0.8208 0.9313 0.7907

SKB+RF 0.6753 0.6996 0.7159 0.7152 0.8585 0.6228 0.6799 0.8709 0.7955 0.8210 0.9359 0.7834

SKB+Bagging(DT) 0.7197 0.7023 0.7145 0.7610 0.8555 0.6522 0.7483 0.8846 0.7550 0.8151 0.9241 0.7866

RFE+ET 0.6833 0.7070 0.7321 0.7390 0.8758 0.7088 0.7034 0.9019 0.8291 0.8209 0.9327 0.7921

RFE+RF 0.7143 0.7022 0.7216 0.7015 0.8279 0.6303 0.7428 0.8833 0.8075 0.8168 0.9298 0.7926

RFE+Bagging(DT) 0.7314 0.7021 0.7193 0.7199 0.8215 0.6584 0.7380 0.8853 0.6942 0.8206 0.9177 0.7842

SKB+RFE+ET 0.6630 0.7070 0.7321 0.7189 0.8948 0.6412 0.7270 0.9070 0.8210 0.8269 0.9354 0.7962

SKB+RFE+RF 0.7011 0.7022 0.7216 0.7091 0.8287 0.6034 0.7029 0.8784 0.7878 0.8164 0.9351 0.7859

SKB+RFE+Bagging(DT) 0.7081 0.7021 0.7193 0.7185 0.8501 0.6591 0.7568 0.8771 0.7410 0.8232 0.9221 0.7843

https://ijeeemi.org/
https://portal.issn.org/resource/ISSN-L/2656-8624
mailto:rudy.herteno@ulm.ac.id
https://doi.org/10.35882/ijeeemi.v8i1.294
https://creativecommons.org/licenses/by-sa/4.0/

 Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics
 Homepage: https://ijeeemi.org/; Vol. 8, No. 1, pp. 1-16, February 2026

e-ISSN: 2656-8624

Corresponding author: Rudy Herteno, rudy.herteno@ulm.ac.id, Department of Computer Science, Faculty of Mathematics and Natural Science,
Banjarbaru, Indonesia.
Digital Object Identifier (DOI): https://doi.org/10.35882/ijeeemi.v8i1.294
Copyright © 2025 by the authors. Published by Jurusan Teknik Elektromedik, Politeknik Kesehatan Kemenkes Surabaya Indonesia. This work
is an open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0).

10

positives, thereby enhancing the model’s confidence in
identifying defective modules. The results further show
that while RFE offers an improvement over SelectKBest,

the hybrid method yields the most consistent and superior
precision overall. Fig. 10 presents the average recall
results for all classifier and feature-selection
combinations. Although recall values remain modest due
to the pronounced class imbalance in the NASA MDP
datasets, the hybrid SelectKBest+RFE method
consistently yields the strongest performance. Extra
Trees achieves the highest recall of 0.2119 under this
configuration, with Random Forest and Bagging
performing similarly. The performance gains observed
from SelectKBest to RFE and then to the hybrid approach
indicate that iterative feature elimination helps retain
features essential for detecting the minority (defect) class,
thereby reducing false negatives. Despite the relatively
small differences among methods, the hybrid strategy
provides the most balanced capability for recovering
defective modules across the datasets.

Table 9. Wilcoxon Signed-Rank Test Comparing
RFE+ET Against Other Configurations

Method Comparison p-Value
Significant
(p < 0.05)

RFE+ET vs SKB+ET 0.0327 Yes

RFE+ET vs SKB+RFE+ET 0.8457 No

RFE+ET vs RFE+RF 0.1294 No

RFE+ET vs SKB+RF 0.0024 Yes

RFE+ET vs SKB+RFE+RF 0.0161 Yes

RFE+ET vs RFE+Bagging 0.0923 No

RFE+ET vs SKB+Bagging 0.3804 No

RFE+ET vs SKB+RFE+Bagging 0.1294 No

Fig 11 presents the average F1-score for all feature-
selection strategies and classifiers. The hybrid
SelectKbest+RFE approach achieves the highest
performance, with Extra Trees reaching the highest score
of 0.2747. These results show that the hybrid method
reduces both false positives and false negatives more
effectively than the standalone techniques. Although
classifier differences are modest, Extra Trees provides
the most consistent gains, reinforcing its suitability for
feature-selection-based SDP. Overall, the F1 results
confirm the benefit of integrating filter and wrapper
mechanisms to produce more reliable and discriminative
feature subsets.

The results presented in Table 9 show that RFE+ET
delivers statistically significant gains over SKB+ET,
SKB+RF, and the hybrid SKB+RFE+RF (p < 0.05),
indicating that its performance advantage is unlikely to be
due to random variation. In contrast, its comparisons with
SKB+RFE+ET, RFE+RF, and their Bagging-based
configurations yield non-significant differences (p > 0.05),
reflecting largely comparable performance among these
methods. Collectively, these findings suggest that the
strength of RFE+ET is most evident when evaluated
against filter-based techniques and hybrid approaches
that employ Random Forest.

Table 10. Average Computational Cost

Method Runtime (sec) PeakMem (MB)

SKB 18.01 0.993

RFE 76.42 0.997

SKB+RFE 63.48 1.003

Table 10 summarizes the average computational cost
of the evaluated feature-selection methods. SKB remains
the most efficient option, exhibiting the lowest runtime and
memory usage across all datasets and classifiers.
Conversely, RFE and the hybrid SKB+RFE configuration
impose considerably higher computational demands due
to their iterative elimination processes, with RFE showing
the greatest runtime overhead. Memory usage is
relatively uniform across methods, indicating that the
dominant source of cost differences lies in time complexity
rather than memory consumption. Overall, the results
highlight an important practical trade-off, although RFE-

Fig 10. Average Recall Values

0.00

0.05

0.10

0.15

0.20

0.25

SelectKBest RFE SelectKBest+RFE

R
ec

al
l

Feature Selection Method

Random Forest Extra Trees Bagging

Fig 11. Average F1-score

0.00

0.05

0.10

0.15

0.20

0.25

0.30

SelectKBest RFE SelectKBest+RFE

F1
-s

co
re

Feature Selection Method

Random Forest Extra Trees Bagging

https://ijeeemi.org/
https://portal.issn.org/resource/ISSN-L/2656-8624
mailto:rudy.herteno@ulm.ac.id
https://doi.org/10.35882/ijeeemi.v8i1.294
https://creativecommons.org/licenses/by-sa/4.0/

 Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics
 Homepage: https://ijeeemi.org/; Vol. 8, No. 1, pp. 1-16, February 2026

e-ISSN: 2656-8624

Corresponding author: Rudy Herteno, rudy.herteno@ulm.ac.id, Department of Computer Science, Faculty of Mathematics and Natural Science,
Banjarbaru, Indonesia.
Digital Object Identifier (DOI): https://doi.org/10.35882/ijeeemi.v8i1.294
Copyright © 2025 by the authors. Published by Jurusan Teknik Elektromedik, Politeknik Kesehatan Kemenkes Surabaya Indonesia. This work
is an open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0).

11

based strategies can deliver improved predictive
performance, they do so at the expense of substantially
greater computational cost when compared to the more
resource-efficient SKB.

IV. Discussion

The AUC results in Table 8 and Fig 7 show that the
RFE+Extra Trees configuration delivers the highest
average AUC of 0.7855, followed by SKB+RFE+ET
(0.7809) and SKB+ET (0.7776). Dataset-level findings
further support this pattern: the SKB+RFE+ET method
achieves an AUC of 0.8948 on MC1, with similarly strong
performance on PC1 and PC4. In contrast, the smaller
performance gaps observed in KC3 and MC2 suggest that
the influence of feature-selection strategies varies across
datasets. Moreover, the variability analyses in Fig. 6
demonstrate that wrapper and hybrid approaches tend to
produce more stable AUC distributions compared to filter-
only techniques, with RFE+Bagging(DT) showing the
tightest interquartile range.

The effectiveness of RFE+Extra Trees can be
explained by the complementary strengths of the two
components. Extra Trees employs a high degree of
randomization during node splitting, enabling broader
exploration of the feature space and reducing the risk of
overfitting. RFE subsequently removes low-importance
features based on model-derived importance scores,
gradually refining the feature subset toward the most
discriminative attributes. This synergy enhances noise
tolerance and reduces redundancy characteristics,
particularly advantageous for the high-dimensional NASA
MDP datasets. Although the hybrid SKB+RFE benefits
from an initial filter stage before wrapper refinement, its
discriminative ability remains slightly below that of pure
RFE.

Class imbalance also plays a pivotal role in shaping
model performance, especially in datasets like MC1 and
PC2. Filter-based methods may inadvertently emphasize
majority-class patterns, while RFE can yield unstable
importance estimates when defective samples are limited.
Although stratified cross-validation and class weighting
help alleviate these issues, recall scores remain low,
which is expected under severe imbalance. Accuracy
results in Fig 8 indicate that the classifiers still capture
broad predictive patterns effectively; however, AUC
remains the more reliable metric for imbalanced data. The
precision scores in Fig. 9 show that the hybrid SKB+RFE
configuration achieves the highest average precision, with
Extra Trees achieving 0.4458. Consistent recall and F1
patterns in Fig 10 and Fig 11 reinforce the conclusion that
the hybrid method enhances minority-class detection,
with Extra Trees again demonstrating the most stable
performance.

Significance test in Table 9 further validates findings.
RFE+Extra Trees achieves statistically significant
improvements over SKB+ET, SKB+RF, and
SKB+RFE+RF (p < 0.05), while performing comparably to
SKB+RFE+ET and RFE+RF. Table 10 introduces an
additional practical consideration: SKB is the most
computationally efficient technique, whereas RFE and

SKB+RFE require substantially higher runtimes due to
iterative elimination. These results underscore the
importance of balancing predictive benefits with
computational cost, particularly in environments requiring
rapid model updates.

Table 11. Comparison of AUC Findings with Previous
Studies

Study Method Avg. AUC

Suntoro et
al. [10]

AWEIG + AdaCost + NB 0.752

Aryanti et
al. [13]

RF + RFE, Boruta, Grid
Search + Copeland

0.749

Herteno et
al. [43]

RF + Correlation 0.5389

Our RFE + Extra Trees 0.7855

Table 11 places the present findings within the context
of previous studies on software defect prediction. Suntoro
et al. employed an AWEIG combined with AdaCost and
Naïve Bayes to address class imbalance, achieving
competitive performance under imbalanced conditions.
Aryanti et al. proposed a more complex pipeline
combining Random Forest with RFE, Boruta, Grid
Search, and the Copeland ranking strategy, highlighting
the benefits of ensemble feature-selection and
hyperparameter optimization. Herteno et al. investigated
correlation-based feature selection integrated with
Random Forest classifiers, demonstrating the
effectiveness of relevance-based filtering in reducing
redundant features. Compared to these approaches, the
proposed RFE+Extra Trees configuration achieves a
higher AUC value (0.7855), indicating improved
discriminative capability. This performance advantage
stems from Extra Trees’ high-randomization splitting
strategy coupled with RFE’s iterative refinement, which
together yield more stable and discriminative feature
subsets across a wide range of datasets.

Despite these encouraging results, several limitations
must be acknowledged. The models were trained with
fixed hyperparameters, and no systematic tuning was
performed, which may affect model stability. The
evaluation was limited to NASA MDP datasets, and
advanced balancing strategies beyond class weighting
were not employed, thereby increasing the risk of
overfitting on smaller or more imbalanced datasets.
Future studies should incorporate systematic
hyperparameter optimization, experiments on larger and
more diverse datasets, and advanced oversampling
methods such as SMOTE or ADASYN. Additionally,
exploring evolutionary or deep learning-based feature-
selection approaches and including broader model
families beyond tree-based classifiers may provide
deeper insights into feature importance, scalability, and
generalizability across different software development
contexts.

From an applied perspective, the strong performance
of RFE+Extra Trees offers practical value for software

https://ijeeemi.org/
https://portal.issn.org/resource/ISSN-L/2656-8624
mailto:rudy.herteno@ulm.ac.id
https://doi.org/10.35882/ijeeemi.v8i1.294
https://creativecommons.org/licenses/by-sa/4.0/

 Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics
 Homepage: https://ijeeemi.org/; Vol. 8, No. 1, pp. 1-16, February 2026

e-ISSN: 2656-8624

Corresponding author: Rudy Herteno, rudy.herteno@ulm.ac.id, Department of Computer Science, Faculty of Mathematics and Natural Science,
Banjarbaru, Indonesia.
Digital Object Identifier (DOI): https://doi.org/10.35882/ijeeemi.v8i1.294
Copyright © 2025 by the authors. Published by Jurusan Teknik Elektromedik, Politeknik Kesehatan Kemenkes Surabaya Indonesia. This work
is an open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0).

12

quality assurance workflows. The refined feature subset
can be embedded into continuous integration pipelines to
automate risk scoring for newly modified code modules,
enabling QA teams to prioritize high-risk components and
allocate testing resources more efficiently. However, the
higher computational cost associated with RFE warrants
careful consideration in large-scale or frequently updated
systems. Overall, the results indicate that substantial
performance improvements can be achieved without
relying on complex ranking aggregation mechanisms,
laying a strong foundation for developing more efficient
and adaptive SDP pipelines.

V. Conclusion

This study conducts a comparative assessment of three
feature-selection techniques: SelectKBest (SKB),
Recursive Feature Elimination (RFE), and their combined
SelectKBest+RFE variant to examine their influence on
SDP models using the NASA MDP datasets. In contrast
to previous work that primarily emphasizes classifier
variations, this study foregrounds the contribution of
feature selection to predictive performance across three
tree-based models: Random Forest (RF), Extra Trees
(ET), and Bagging (Decision Tree/DT). The use of
stratified 10-fold cross-validation, together with the AUC
metric, ensures consistent and reliable evaluation across
datasets with diverse characteristics and varying degrees
of class imbalance.

The experimental results indicate that the integration
of RFE with the Extra Trees classifier produces the
strongest predictive outcomes, attaining an average AUC
of 0.7855 and outperforming both the SKB+RFE+ET and
SKB+ET configurations. These findings highlight the
effectiveness of iterative wrapper-based elimination
guided by model-specific importance scores, which
facilitates the selection of more stable and informative
feature subsets. This advantage is particularly evident
when combined with the Extra Trees algorithm's
randomized structure. Additionally, the stability
demonstrated by the RFE+Bagging (DT) configuration
further supports the robustness of wrapper-based
methods across heterogeneous datasets.

Beyond predictive accuracy, the computational cost
analysis underscores meaningful trade-offs among the
examined methods. SKB consistently exhibits the lowest
runtime and memory consumption, making it a practical
choice when computational resources are limited. In
contrast, RFE and the hybrid SKB+RFE approach incur
markedly higher runtimes due to their iterative elimination
processes. These observations suggest that while
wrapper-based strategies can enhance predictive
performance, they require substantially greater
computational effort, which is an important consideration
for deployment in large-scale or real-time software
engineering settings.

The study is restricted to the NASA MDP datasets and
does not employ class-balancing techniques, or
hyperparameter optimization. This design choice enables
an isolated assessment of the intrinsic effects of feature-
selection methods without confounding influences from

parameter tuning or additional preprocessing. Future
work is encouraged to incorporate explicit data-level
balancing methods such as SMOTE, ADASYN, or
Random Under Sampling, along with hyperparameter
optimization techniques, including Grid Search or
Bayesian Optimization, to address class imbalance better
and derive more refined model configurations.

Overall, the findings confirm that pairing RFE with the
Extra Trees classifier yields the strongest predictive
performance, while the stability of RFE+Bagging(DT) and
the efficiency of SKB illustrate meaningful trade-offs
between accuracy and computational overhead. These
insights provide a foundation for developing more
adaptive, efficient, and reliable SDP frameworks in future
research.

Acknowledgement

The authors would like to express sincere gratitude to the
Department of Computer Science, Faculty of
Mathematics and Natural Science, Lambung Mangkurat
University, Banjarbaru, for the invaluable support and
resources provided throughout this research. The
facilities, academic environment, and encouragement
from members of the study program have significantly
contributed to the completion of this work. This study
would not have been possible without the institution’s
commitment to advancing research and innovation in
software defect prediction.

Funding

This research received no specific grant from any funding
agency in the public, commercial, or not-for-profit sectors

Data Availability

The datasets analyzed in this study are publicly available
from the NASA Metrics Data Program (MDP) and can be
accessed at:
https://github.com/klainfo/NASADefectDataset/tree/mast
er. No new datasets were generated during the current
study.

Author Contribution

Rahmayanti was responsible for drafting the manuscript,
conducting the literature review, implementing the
experimental framework, and performing the analysis and
interpretation of the results. Rudy Herteno contributed by
preparing and curating the datasets, providing
methodological guidance, and supervising the overall
research process. Setyo Wahyu Saputro contributed to
the development and validation of the classification
models and provided technical feedback to improve the
experimental design. Triando Hamonangan Saragih and
Friska Abadi contributed through a critical review of the
manuscript, evaluation of the research methodology, and
constructive suggestions to improve clarity, structure, and
academic rigor. All authors reviewed and approved the
final version of the manuscript and agreed to be
responsible for all aspects of the work, ensuring integrity
and accuracy.

https://ijeeemi.org/
https://portal.issn.org/resource/ISSN-L/2656-8624
mailto:rudy.herteno@ulm.ac.id
https://doi.org/10.35882/ijeeemi.v8i1.294
https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/klainfo/NASADefectDataset/tree/master
https://github.com/klainfo/NASADefectDataset/tree/master

 Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics
 Homepage: https://ijeeemi.org/; Vol. 8, No. 1, pp. 1-16, February 2026

e-ISSN: 2656-8624

Corresponding author: Rudy Herteno, rudy.herteno@ulm.ac.id, Department of Computer Science, Faculty of Mathematics and Natural Science,
Banjarbaru, Indonesia.
Digital Object Identifier (DOI): https://doi.org/10.35882/ijeeemi.v8i1.294
Copyright © 2025 by the authors. Published by Jurusan Teknik Elektromedik, Politeknik Kesehatan Kemenkes Surabaya Indonesia. This work
is an open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0).

13

Declarations

Ethical Approval

This study did not involve human participants or animal
subjects. Therefore, ethical approval was not required.

Consent for Publication Participants

Not applicable.

Competing Interests

The authors declare no competing interests.

References

[1] F. Matloob, S. Aftab, M. Ahmad, M. A. Khan, A.
Fatima, M. Iqbal, W. M. Alruwaili, and N. S.
Elmitwally, "Software Defect Prediction Using
Supervised Machine Learning Techniques: A
Systematic Literature Review", Intelligent
Automation & Soft Computing, vol. 29, no. 2, pp.
403-421, Jun. 2021, doi:
10.32604/iasc.2021.017562.

[2] L. Q. Chen, C. Wang, and S. L. Song, "Software
Defect Prediction Based on Nested-Stacking and
Heterogeneous Feature Selection", Complex &
Intelligent Systems, vol. 8, pp. 3333-3348, Feb.
2022, doi: 10.1007/s40747-022-00676-y.

[3] A. O. Balogun, S. Basri, S. J. Abdulkadir, and A. S.
Hashim, "Performance Analysis of Feature
Selection Methods in Software Defect Prediction: A
Search Method Approach", Applied Sciences, vol.
9, no. 13, pp. 1-20, Jul. 2019, doi:
10.3390/app9132764.

[4] N. Krishnaveni, and V. Radha, "Feature Selection
Algorithms for Data Mining Classification: A
Survey", Indian Journal of Science and
Technology, vol. 12, no. 6, pp. 1-11, Feb. 2019, doi:
10.17485/ijst/2018/v12i6/139581.

[5] N. Pudjihartono, T. Fadason, A. W. Kempa-Liehr,
and J. M. O’Sullivan, “A Review of Feature
Selection Methods for Machine Learning-Based
Disease Risk Prediction”, Front. Bioinform, vol. 2,
Art. no. 927312, 2022, doi:

10.3389/fbinf.2022.927312.

[6] Y. Li, C. Y. Chen, and W. W. Wasserman, “Deep
Feature Selection: Theory and Application to
Identify Enhancers and Promoters”, Conference
Paper, pp. 1-13, 2015, doi:
10.13140/2.1.3673.6327.

[7] N. A. A. Khleel, and K. Nehez, “A New Approach to
Software Defect Prediction Based on Convolutional
Neural Network and Bidirectional Long Short-Term
Memory”, Production Systems and Information
Engineering, vol. 10, no. 3, pp. 1-15, Nov. 2022,
doi: 10.32968/psaie.2022.3.1.

[8] X. He, K. Zhao, and X. Chu, “AutoML: A Survey of
the State-of-the-Art”, Knowledge-Based Systems,
vol. 212, no. 106622, pp. 1-35, Jan. 2021, doi:
10.1016/j.knosys.2020.106622.

[9] T. Sharma, A. Jatain, S. Bhaskar, and K. Pabreja,
"An Empirical Analysis of Feature Selection
Techniques for Software Defect Prediction",

Journal of Autonomous Intelligence, vol. 7, no. 3,
pp. 1-17, 2024, doi: 10.32629/jai.v7i3.1097.

[10] J. Suntoro, F. W. Christanto, and H. Indriyawati,
"Software Defect Prediction Using
AWEIG+ADACOST Bayesian Algorithm for
Handling High Dimensional Data and Class
Imbalance Problem", Int. Journal of Information
Technology and Business, vol. 5, no. 1, pp. 27-32,
Nov. 2022, doi: 10.24246/ijiteb.512018.27-32.

[11] A. O. Balogun, S. Basri, S. Mahamad, L. F. Capretz,
A. A. Imam, M. A. Almomani, V. E. Adeyemo, and
G. Kumar, "A Novel Rank Aggregation-Based
Hybrid Multifilter Wrapper Feature Selection
Method in Software Defect Prediction",
Computational Intelligence and Neuroscience, vo.
2021, no. 1, Nov. 2021, doi:
10.1155/2021/5069016.

[12] V. Maulida, R. Herteno, D. Kartini, F. Abadi, and M.
R. Faisal, “Feature Selection Using Firefly
Algorithm With Tree-Based Classification In
Software Defect Prediction
”, j.electron.electromedical.eng.med.inform, vol. 5,
no. 4, pp. 223-230, Aug. 2023, doi:
10.35882/jeeemi.v5i4.315.

[13] A. K. Aryanti, R. Herteno, F. Indriani, R. A. Nugroho,
and M. Muliadi, “Implementation of Copeland
Method on Wrapper-Based Feature Selection
Using Random Forest For Software Defect
Prediction”, ijeeemi, vol. 7, no. 1, pp. 90–101, Feb.
2025, doi: 10.35882/2pgffc67.

[14] A. S. Nugraha, M. R. Faisal, F. Abadi, R. A.
Nugroho, and R. Herteno, “DEEP NEURAL
NETWORK ON SOFTWARE DEFECT
PREDICTION”, JDSSE, vol. 2, no. 02, pp. 82-89,
Sep. 2021.

[15] F. Matloob, T. M. Ghazal, N. Taleb, S. Aftab, M.
Ahmad, M. A. Khan, S. Abbas, and T. R. Soomro,
"Software Defect Prediction Using Ensemble
Learning: A Systematic Literature Review", IEEE
Access, pp. 98754-98771, Jul. 2021, doi:
10.1109/ACCESS.2021.3095559.

[16] H. Alsghaier, and M. Akour, "Software Fault
Prediction Using Particle Swarm Algorithm with
Genetic Algorithm and Support Vector Machine
Classifier", Softw Pract Exp, vol. 50, no. 4, pp. 407-
427, Jan. 2020, doi: 10.1002/spe.2784.

[17] S. Mcmurray, and A. H. Sodhro, "A Study on ML
Based Software Defect Detection for Security
Traceability in Smart Healthcare Applications",
Sensors, vol. 23, no. 7, Apr. 2023, doi:
10.3390/s23073470.

[18] H. Alsawalqah, N. Hijazi, M. Eshtay, H. Faris, A. A.
Radaideh, I. Aljarah, and Y. Alshamaileh, "Software
Defect Prediction Using Heterogeneous Ensemble
Classification Based on Segmented Patterns",
Appl. Sci., vol. 10, no. 5, pp. 1-25, Mar. 2020, doi:
10.3390/app10051745.

[19] A. Ghavidel, P. Pazos, R. Del Aguila Suarez, and A.
Atashi, “Predicting the Need for Cardiovascular

https://ijeeemi.org/
https://portal.issn.org/resource/ISSN-L/2656-8624
mailto:rudy.herteno@ulm.ac.id
https://doi.org/10.35882/ijeeemi.v8i1.294
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.35882/2pgffc67

 Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics
 Homepage: https://ijeeemi.org/; Vol. 8, No. 1, pp. 1-16, February 2026

e-ISSN: 2656-8624

Corresponding author: Rudy Herteno, rudy.herteno@ulm.ac.id, Department of Computer Science, Faculty of Mathematics and Natural Science,
Banjarbaru, Indonesia.
Digital Object Identifier (DOI): https://doi.org/10.35882/ijeeemi.v8i1.294
Copyright © 2025 by the authors. Published by Jurusan Teknik Elektromedik, Politeknik Kesehatan Kemenkes Surabaya Indonesia. This work
is an open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0).

14

Surgery: A Comparative Study of Machine Learning
Models”, j.electron.electromedical.eng.med.inform,
vol. 6, no. 2, pp. 92-106, Feb. 2024, doi:
10.35882/jeeemi.v6i2.359.

[20] D. P. H. Gray, “Software Defect Prediction Using
Static Code Metrics: Formulating a Methodology”,
Ph.D. dissertation, Univ. of Hertfordshire, Hatfield,
UK, Dec. 2012. [Online]. Available:
https://uhra.herts.ac.uk/id/eprint/16494/1/0407942
0%20Gray%20David%20final%20PhD%20submis
sion.pdf

[21] K. Marzuki, L. G. Rady Putra, H. Hairani, L. Z. A.
Mardedi, and J. X. Guterres, “Performance
Improvement of The Random Forest Method
Based on Smote-Tomek Link on Lombok Tourism
Analysis Sentiment”, BITe, vol. 5, no. 2, pp. 151–
158, Jan. 2024, doi: 10.30812/bite.v5i2.3166.

[22] H. Ghinaya, R. Herteno, M. R. Faisal, A. Farmadi,
and F. Indriani, “Analysis of Important Features in
Software Defect Prediction Using Synthetic
Minority Oversampling Techniques (SMOTE),
Recursive Feature Elimination (RFE) and Random
Forest”, j.electron.electromedical.eng.med.inform,
vol. 6, no. 3, pp. 276-288, May 2024, doi:
10.35882/jeeemi.v6i3.453.

[23] J. Kaliappan, A. R. Bagepalli, S. Almal, R. Mishra,
Y.-C. Hu, and K. Srinivasan, “Impact of Cross-
Validation on Machine Learning Models for Early
Detection of Intrauterine Fetal Demise”,
Diagnostics, vol. 13, no. 10, pp. 1-22, May 2023,
doi: 10.3390/diagnostics13101692.

[24] X. Duan, "Automatic Identification of Conodont
Species Using Fine-Grained Convolutional Neural
Networks", Front. Earth Sci. vol. 10, pp. 1-15, Jan.
2023, doi: 10.3389/feart.2022.1046327.

[25] S. Szeghalmy, and A. Fazekas, "A Comparative
Study of the Use of Stratified Cross-Validation and
Distribution-Balanced Stratified Cross-Validation in
Imbalanced Learning", Sensors, vol. 23, no. 4, pp.
1-27, Feb. 2023, doi: 10.3390/s23042333.

[26] N. R. Abid-Althaqafi and H. A. Alsalamah, "The
Effect of Feature Selection on the Accuracy of X-
Platform User Credibility Detection with Supervised
Machine Learning", Electronics, vol. 13, no. 1, pp.
1-28, Jan. 2024, doi:
10.3390/electronics13010205.

[27] J. R. Vergara and P. A. Estevez, “A Review of
Feature Selection Methods Based on Mutual
Information”, Neural Comput & Applic, vol. 24, no.
1, pp. 1-12, Jan. 2014, doi: 10.1007/s00521-013-
1368-0.

[28] N. Papaioannou, G. Myllis, A. Tsimpiris, and V.
Vrana, “The Role of Mutual Information Estimator
Choice in Feature Selection: An Empirical Study on
mRMR", Information, vol. 16, no. 9, pp. 1-25, Aug.
2025, doi: 10.3390/info16090724.

[29] O. Bulut, B. Tan, E. Mazzullo, and A. Syed,
“Benchmarking Variants of Recursive Feature
Elimination: Insights from Predictive Tasks in

Education and Healthcare", Information, vol. 16,
no. 4, pp. 1-21, Jun. 2025, doi:
10.3390/info16060476.

[30] T. A. Pham and V. Q. Tran, “Developing Random
Forest Hybridization Models for Estimating the
Axial Bearing Capacity of Pile”, PLoS ONE, vol. 17,
no. 3, Mar, 2022, doi:
10.1371/journal.pone.0265747.

[31] F. Tang, and H. Ishwaran, “Random Forest Missing
Data Algorithms”, Statistical Analysis and Data
Mining: The ASA Data Science Journal, vol. 10, no.
6, pp. 363-377, Jun. 2017. doi:
10.1002/sam.11348.

[32] R. Supriyadi, W. Gata, N. Maulidah, and A. Fauzi,
“Penerapan Algoritma Random Forest Untuk
Menentukan Kualitas Anggur Merah”, E-Bisnis, vol.
13, no. 2, pp. 67–75, Nov. 2020, doi: 10.51903/e-
bisnis.v13i2.247.

[33] P. Geurts, D. Ernst, and L. Wehenkel, “Extremely
Randomized Trees”, Machine Learning, vol. 63, no.
1, pp. 3-42, Mar. 2006, doi: 10.1007/s10994-006-
6226-1.

[34] W. N. Hidayatullah, R. Herteno, M. R. Faisal, R. A.
Nugroho, S. W. Saputro, and Z. B. Akhtar, “A
Comparative Analysis of Polynomial-fit-SMOTE
Variations with Tree-Based Classifiers on Software
Defect Prediction”,
j.electron.electromedical.eng.med.inform, vol. 6,
no. 3, pp. 289-301, Jul. 2024, doi:
10.35882/jeeemi.v6i3.455.

[35] Y. Lou, Y. Ye, Y. Yang, W. Zou, G. Wang, M. Strong,
S. Upadhyaya, and C. Payne, “Individualized
empirical baselines for evaluating the energy
performance of existing buildings”, Science and
Technology for the Built Environment, vol. 29, no.
1, pp. 19-33, Oct. 2022, doi:
10.1080/23744731.2022.2134680.

[36] L. Breiman, “Bagging Predictors”, Machine
Learning, vol. 24, no. 2, pp. 123-140, Aug. 1996,
doi: 10.1007/BF00058655.

[37] X. Wu, and J. Wang, “Application of Bagging,
Boosting and Stacking Ensemble and
EasyEnsemble Methods for Landslide
Susceptibility Mapping in the Three Gorges
Reservoir Area of China”, Int. J. Environ. Res.
Public Health, vol. 20, no. 6, pp. 1-18, Mar. 2023,
doi: 10.3390/ijerph20064977.

[38] S. M. H. Kabir, M. T. Rahman, and A. H. Mridul,

“Software Defect Prediction Using Traditional

Machine Learning and Ensemble Learning

Algorithms”, SWT, vol. 1, pp. 1-16, May. 2025,

doi: 10.47852/bonviewSWT52025645.

[39] V. K. R. R. Satuluri and V. Kumar, “Precision Insulin

Delivery: Predictive Modelling for Bolus Insulin

Injection in Real-Time”, IJACSA, vol. 15, no. 2, pp.

292-302, Jan. 2024, doi:

10.14569/IJACSA.2024.0150231.

https://ijeeemi.org/
https://portal.issn.org/resource/ISSN-L/2656-8624
mailto:rudy.herteno@ulm.ac.id
https://doi.org/10.35882/ijeeemi.v8i1.294
https://creativecommons.org/licenses/by-sa/4.0/
https://uhra.herts.ac.uk/id/eprint/16494/1/04079420%20Gray%20David%20final%20PhD%20submission.pdf?utm_source=chatgpt.com
https://uhra.herts.ac.uk/id/eprint/16494/1/04079420%20Gray%20David%20final%20PhD%20submission.pdf?utm_source=chatgpt.com
https://uhra.herts.ac.uk/id/eprint/16494/1/04079420%20Gray%20David%20final%20PhD%20submission.pdf?utm_source=chatgpt.com
https://uhra.herts.ac.uk/id/eprint/16494/1/04079420%20Gray%20David%20final%20PhD%20submission.pdf?utm_source=chatgpt.com
https://doi.org/10.30812/bite.v5i2.3166
https://doi.org/10.3390/diagnostics13101692
https://doi.org/10.3390/electronics13010205
https://doi.org/10.1371/journal.pone.0265747
https://doi.org/10.51903/e-bisnis.v13i2.247
https://doi.org/10.51903/e-bisnis.v13i2.247
https://doi.org/10.1007/BF00058655
http://doi.org/10.3390/ijerph20064977
https://doi.org/10.47852/bonviewSWT52025645

 Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics
 Homepage: https://ijeeemi.org/; Vol. 8, No. 1, pp. 1-16, February 2026

e-ISSN: 2656-8624

Corresponding author: Rudy Herteno, rudy.herteno@ulm.ac.id, Department of Computer Science, Faculty of Mathematics and Natural Science,
Banjarbaru, Indonesia.
Digital Object Identifier (DOI): https://doi.org/10.35882/ijeeemi.v8i1.294
Copyright © 2025 by the authors. Published by Jurusan Teknik Elektromedik, Politeknik Kesehatan Kemenkes Surabaya Indonesia. This work
is an open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0).

15

[40] A. D. Putri, F. Sholekhah, E. Dadynata, L. Efrizoni,
R. Rahmaddeni, and N. Sapina, “Penerapan
Algoritma Decision Tree C4.5 untuk Memprediksi
Tingkat Kelangsungan Hidup Pasien Kanker Tiroid:
The Application of C4.5 Decision Tree Algorithm for
Predicting the Survival Rate of Thyroid Cancer
Patients”, MALCOM, vol. 4, no. 4, pp. 1485-1495,
Sep. 2024, doi: 10.57152/malcom.v4i4.1532.

[41] A. Alazba, and H. Aljamaan, “Software Defect

Prediction Using Stacking Generalization of

Optimized Tree-Based Ensembles”, Appl. Sci., vol.

12, no. 9, pp. 1-20, Apr. 2022. Doi

10.3390/app12094577.

[42] B. Zhou, H. Zhao, Y. Wen, G. Ding, Y. Xing, X. Lin,
and L. Xiao, “Software Defect Prediction Based on
Semantic Views of Metrics: Clustering Analysis and
Model Performance Analysis”, Comput. Mater.
Contin., vol. 84, no. 3, pp. 5201–5221, Jul.
2025, doi: 10.32604/cmc.2025.065726.

[43] R. Herteno, M. R. Faisal, R. A. Nugroho, F. Abadi,
and S. W. Saputro, “Agregasi Peringkat
Berdasarkan Feature Filter Rangking Dalam
Cross-Project Software Defects”, SINTECH
Journal, vol. 8, no. 1, pp. 1–11, Apr. 2025, doi:
10.31598/sintechjournal.v8i1.1763.

AUTHOR BIOGRAPHY

Rahmayanti is an undergraduate student
in Computer Science at Lambung
Mangkurat University. Her academic
interests encompass software defect
prediction, feature selection strategies, and
machine-learning-based classification
models. Her current work primarily

investigates improvements in predictive performance
through comparative evaluations of filter, wrapper, and
hybrid feature selection approaches. Throughout her
studies, she has actively participated in student
organizations and diverse academic initiatives, thereby
strengthening her technical competence, analytical
reasoning, and collaborative abilities. She remains
committed to contributing practical and research-oriented
advancements within the broader domain of software
engineering. She can be contacted at email:
2211016120010@mhs.ulm.ac.id.

Rudy Herteno earned his bachelor’s
degree in Computer Science from Lambung
Mangkurat University in 2011. Following his
graduation, he worked as a software
developer for several years, gaining
extensive professional experience in

designing and implementing software systems. During
this period, he contributed to the development of various
software solutions, particularly those intended to support
operational needs within local government institutions. In
2017, he completed his master’s degree in Informatics at
STMIK Amikom University. He currently serves as a
lecturer in the Computer Science program at Lambung
Mangkurat University. His research interests encompass

software engineering, software defect prediction, and
deep learning, with a focus on enhancing software quality,
improving error detection mechanisms, and advancing
artificial intelligence-driven solutions. He can be
contacted at email: rudy.herteno@ulm.ac.id.

Setyo Wahyu Saputro is a lecturer in the
Computer Science Department, Faculty of
Mathematics and Natural Science,
Lambung Mangkurat University in
Banjarbaru. He earned his bachelor’s
degree in Computer Science from Lambung
Mangkurat University in 2011 and

subsequently completed his master’s degree in
Informatics at STMIK Amikom University in 2016. Since
2017, he has been actively engaged as an information
technology practitioner and consultant, serving as a
project manager and systems analyst for various
government and private sector initiatives across South
Kalimantan. His research interests encompass software
engineering, human-computer interaction, and
applications of artificial intelligence. He can be contacted
at the email address setyo.saputro@ulm.ac.id.

Triando Hamonangan Saragih is a
lecturer in the Computer Science
Department, Faculty of Mathematics and
Natural Science, Lambung Mangkurat
University in Banjarbaru, where he is
actively engaged in academic and research

activities, with a strong focus on the broad field of Data
Science. He earned his bachelor’s degree in Informatics
from Brawijaya University, Malang, in 2016, an
accomplishment that laid the foundation for his
subsequent academic trajectory. He later pursued and
completed a master’s degree in Computer Science at the
same institution in 2018, further strengthening his
expertise. His current research interests remain centered
on Data Science and its associated analytical
methodologies. He can be contacted at email:
triando.saragih@ulm.ac.id.

Friska Abadi earned his bachelor’s degree
in Computer Science from Lambung
Mangkurat University, Banjarbaru,
Indonesia, in 2011, and subsequently
completed his Master’s degree in
Informatics at STMIK Amikom Yogyakarta in

2016. He is currently serving as a lecturer in the
Department of Computer Science, Faculty of
Mathematics and Natural Sciences, Lambung Mangkurat
University. His academic and research interests focus on
data mining and software engineering, particularly in the
application of computational methods for data analysis
and software quality improvement. In addition to his
teaching responsibilities, he is actively involved in
academic supervision and research activities within the
department. He has contributed to various academic
publications and participated in technology-related

https://ijeeemi.org/
https://portal.issn.org/resource/ISSN-L/2656-8624
mailto:rudy.herteno@ulm.ac.id
https://doi.org/10.35882/ijeeemi.v8i1.294
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.32604/cmc.2025.065726
mailto:2211016120010@mhs.ulm.ac.id
mailto:rudy.herteno@ulm.ac.id
mailto:setyo.saputro@ulm.ac.id
mailto:triando.saragih@ulm.ac.id

 Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics
 Homepage: https://ijeeemi.org/; Vol. 8, No. 1, pp. 1-16, February 2026

e-ISSN: 2656-8624

Corresponding author: Rudy Herteno, rudy.herteno@ulm.ac.id, Department of Computer Science, Faculty of Mathematics and Natural Science,
Banjarbaru, Indonesia.
Digital Object Identifier (DOI): https://doi.org/10.35882/ijeeemi.v8i1.294
Copyright © 2025 by the authors. Published by Jurusan Teknik Elektromedik, Politeknik Kesehatan Kemenkes Surabaya Indonesia. This work
is an open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0).

16

research and community service programs. He can be
contacted at email: friska.abadi@ulm.ac.id.

https://ijeeemi.org/
https://portal.issn.org/resource/ISSN-L/2656-8624
mailto:rudy.herteno@ulm.ac.id
https://doi.org/10.35882/ijeeemi.v8i1.294
https://creativecommons.org/licenses/by-sa/4.0/
mailto:friska.abadi@ulm.ac.id

