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Abstract

B-mode ultrasound (USG) is a key imaging modality for fetal assessment, providing
a noninvasive approach to monitor anatomical development and detect congenital
anomalies at an early stage. However, portable ultrasound devices commonly used
in low-resource healthcare settings often yield low-resolution images with significant
speckle noise, reducing diagnostic accuracy. Furthermore, the scarcity of labeled
medical data, caused by privacy regulations such as HIPAA and the high cost of
expert annotation, poses a significant challenge for developing robust artificial
intelligence (Al) diagnostic models. This study proposes a CycleGAN-based deep
learning model enhanced with a histogram-guided discriminator (HisDis) to generate
realistic synthetic B-mode fetal ultrasound images. A publicly available dataset from
the Zenodo repository containing 1,000 grayscale fetal head images was utilized.
Preprocessing included normalization, histogram equalization, and image resizing,
while the architecture combined two ResNet-based generators and a dual
discriminator configuration integrating PatchGAN and histogram-guided evaluation.
The model was trained using standard optimization settings to ensure stable
convergence. Experimental results demonstrate that the proposed HisDis module
accelerates convergence by 18 epochs and reduces the Fréchet Inception Distance
(FID) by 23.6 percent from 1580.72 to 1208.49 compared with the baseline CycleGAN.
Statistical analysis revealed consistent pixel-intensity distributions between the
original and synthetic images, with entropy from 7.16 to 7.40. At the same time, visual
assessment confirmed that critical anatomical structures, including the brain midline
and lateral ventricles, were well preserved. These results indicate that the CycleGAN-
HisDis model produces statistically and visually realistic fetal ultrasound images
suitable for medical data augmentation and Al-based diagnostic training.
Furthermore, this approach holds potential to enhance diagnostic reliability and
clinical education in healthcare settings with limited imaging resources. Future work
will focus on clinical validation and generalization across diverse fetal ultrasound
datasets.

l. Introduction
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Ultrasound (US) imaging remains one of the most widely
used diagnostic modalities because of its real-time
capability, non-invasive nature, and cost-effectiveness. In
fetal and musculoskeletal imaging, B-mode ultrasound
plays a crucial role in assessing anatomical development
and detecting abnormalities [1]. B-mode ultrasound is the
most fundamental and widely available imaging modality
for fetal assessment, particularly in low-resource
healthcare settings where advanced ultrasound modes,
such as Doppler or M-mode, are not consistently
available. B-mode imaging provides essential structural
information required for routine fetal brain assessment,
including visualization of the midline, lateral ventricles,
and skull contours. Therefore, this study focuses
exclusively on B-mode fetal ultrasound to maximize
clinical relevance and applicability in data-scarce
environments. However, ultrasound images often suffer
from low contrast, speckle noise, and operator

dependence, which can significantly limit the accuracy of
clinical interpretation [2]. To overcome these challenges,
recent developments in deep learning have enabled the
synthesis of high-quality ultrasound images and the
enhancement of existing ones through data-driven
models. For instance, [3] demonstrated that deep learning
could effectively  generate  synthetic = B-mode
musculoskeletal ultrasound images, while [4] used a
CycleGAN model with perceptual loss to improve image
enhancement. The foundational CycleGAN framework by
[5] has since become a cornerstone in unpaired image-to-
image ftranslation. Generative Adversarial Networks
(GANs) have become central to medical image synthesis
and augmentation [6], [7]. These models have been
successfully applied to breast [7], [8], [9], liver [10],
hemorrhage [11], brain [12], [13], [14], abdomen [15], and
fetal imaging [16], enhancing the diagnostic potential of
models trained with limited data. Diffusion-based
generative models have recently emerged as promising
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alternatives, offering better control of noise and texture
realism [17], [18], [19], [20], [21]. Furthermore, hybrid
architectures combining attention mechanisms, multi-
resolution strategies, or histogram-based discriminators
have shown improved visual fidelity and structural
consistency [12], [22], [23].

Empirical studies have demonstrated that controllable
GANSs [24], [25], hybrid autoencoder GAN model [26],
semi-supervised frameworks [8], self-supervised [27] and
speckle-adaptive models [22] can effectively reproduce
realistic tissue patterns, improving segmentation and
classification tasks. Broader reviews, such as those by
[28], emphasize the growing role of GANs and diffusion
models in synthetic medical imaging. Domain-specific
applications, including musculoskeletal [3], [17], [29],
bone [30], and cardiac imaging [31]. The domains
highlight the expanding clinical relevance of generative
models. New trends, such as domain adaptation for cross-
device harmonization [32] and autoencoder-assisted
GANs for lung ultrasound synthesis [33], further
strengthen data efficiency and model generalization.
Recent studies have also demonstrated the practical
utility of GANs for breast cancer segmentation [34] and
fetal brain image synthesis [16], indicating that synthetic
ultrasound data can effectively augment training datasets
for diagnostic models. Collectively, these works
demonstrate that integrating GAN, diffusion, and hybrid
generative approaches enables realistic and data-efficient
ultrasound image generation, paving the way for robust
Al-assisted diagnostics in healthcare environments with
limited data and imaging resources [35], [36], [37].

Although previous studies have highlighted challenges
such as speckle noise, low resolution, and data scarcity,
an often-overlooked issue is the inconsistency of global
pixel intensity distributions in synthetically generated
ultrasound images. In fetal ultrasound, global intensity
characteristics are closely related to tissue echogenicity
and anatomical interpretability. Synthetic images with
distorted histogram distributions may appear visually
plausible at a local level. Still, they can misrepresent
tissue characteristics, potentially degrading the
performance of downstream diagnostic models and
reducing clinical trust, particularly in resource-constrained
settings where image quality is already limited. Despite
these advances, generating statistically and visually
consistent fetal brain ultrasound images remains
underexplored. Variations in probe angle, maternal tissue
composition, and fetal motion cause non-uniform intensity
distributions that degrade generative performance.
Therefore, this study proposes a CycleGAN-based
framework with histogram-guided discriminators (HisDis)
to generate realistic synthetic B-mode fetal ultrasound
images. The proposed method aligns pixel-intensity
histograms while preserving anatomical structures, such
as the lateral ventricles and the midline. Evaluation
includes both quantitative metrics, such as Fréchet
Inception Distance (FID), histogram intersection, entropy,
and expert qualitative analysis.

By improving the realism and fidelity of synthetic fetal
ultrasound data, this approach aims to support data

augmentation and model training in settings where clinical
data are scarce. Furthermore, the generated images can
enhance diagnostic model generalization, assist in
medical training, and ultimately contribute to safer, more
accessible fetal imaging technologies across diverse
healthcare environments.

Although several GAN-based and diffusion-based
frameworks have been successfully applied to medical
image synthesis, their performance in fetal ultrasound

imaging remains limited. Conventional CycleGAN
architectures  predominantly rely on PatchGAN
discriminators that focus on local texture realism,

neglecting the preservation of global pixel-intensity
distributions inherent to ultrasound imaging. As a result,
synthetically generated images may exhibit locally
plausible structures but remain statistically misaligned
with real ultrasound data, often appearing over-smoothed
or inconsistent in tissue echogenicity. Furthermore,
diffusion-based approaches, while capable of producing
visually realistic results, typically require extensive
computational resources and large-scale paired datasets,
which are difficult to obtain in fetal ultrasound due to
privacy constraints and annotation costs. These
limitations highlight the need for a generative framework
that jointly enforces local structural fidelity and global
statistical consistency in fetal ultrasound synthesis.

To address these limitations, the present study
introduces a histogram-guided discriminator (HisDis)
within a CycleGAN framework to improve statistical fidelity
while maintaining anatomical consistency. Unlike
previous studies that primarily optimize perceptual or
structural losses, the proposed HisDis enforces alignment
of global pixel-intensity distributions between the real and
synthetic ultrasound domains, leading to enhanced visual
realism and quantitative consistency. The novelty of this
work lies in incorporating statistical learning through a
histogram-guided discriminator, enabling the model to
achieve both spatial and statistical realism in fetal
ultrasound synthesis. Histogram-aware losses and
statistical alignment strategies have previously been
explored in non-medical image synthesis and style
transfer domains to improve global appearance
consistency. However, their application to fetal ultrasound
imaging remains limited. Ultrasound images pose unique
challenges due to speckle noise, operator dependence,
and nonuniform intensity distributions. This study extends
histogram-guided adversarial learning to fetal ultrasound
synthesis by introducing a histogram-guided discriminator
(HisDis) that explicitly enforces global intensity alignment
while preserving anatomical structures.

Problem Statement: Existing generative models for
fetal ultrasound image synthesis lack mechanisms to
maintain global histogram consistency, leading to
synthetic images that deviate statistically from real
ultrasound intensity distributions.

Hypothesis: Integrating a  histogram-guided
discriminator into the CycleGAN framework will
significantly improve statistical alignment and structural
realism of synthetic fetal ultrasound images compared to
conventional CycleGAN architectures.
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This study is structured as follows: Section Il describes
the dataset, proposed method, and training and
evaluation procedures. Section Il presents the
experimental results and quantitative evaluation. Section
IV discusses the interpretation and comparison of the
results with other studies, as well as limitations. Section V
presents the conclusions, summarizing the objectives,
main findings, and future work.

Il. Materials and Method

The overall methodological pipeline was designed to
ensure statistical consistency, anatomical fidelity, and
clinical relevance in the generation of synthetic fetal
ultrasound images. Each step, from data preprocessing to
model training and evaluation, was systematically aligned
with the study’s objective of improving histogram-guided
statistical realism.

A. Dataset
The fetal ultrasound images used in this study were
obtained from a publicly available dataset at

https://hc18.grand-challenge.org/ [38], consisting of 1,000
grayscale transverse fetal head images with an original
resolution of 800 x 540 pixels. The images were acquired
from routine clinical examinations covering gestational
ages between 18 and 24 weeks. Two experienced
radiologists independently reviewed the dataset and
selected 900 images based on the visibility of key
anatomical structures (midline, lateral ventricles, and
thalamus) and the absence of severe artifacts. Inter-rater
agreement was high, that is, Cohen’s k = 0.82.

B. Data Collection

All images were semi-automatically annotated using a
combination of the Labellmg tool and a custom Python
script, followed by conversion to the TFRecord format for
training compatibility. The study exclusively used publicly
available, anonymized ultrasound images, and no direct
patient involvement or identifiable personal data were
included, thereby ensuring compliance with data
protection and privacy requirements.

C. Data Processing

A basic transformation was applied to each ultrasound
image used in this study to ensure consistent model input.
All images were resized to 256 x 256 pixels using bicubic
interpolation to preserve anatomical boundaries while
ensuring computational efficiency. Pixel intensities were
normalized to the range [-1, 1] using dataset-wide mean
and standard deviation normalization. Contrast
enhancement was performed using Contrast Limited
Adaptive Histogram Equalization (CLAHE) with a clip limit
of 2.0 and an 8 x 8 tile grid. Data augmentation included
random horizontal flipping with probability 0.5, a Gaussian
blur 5 x 5 kernel, and ¢ = 1.5 to improve robustness
against speckle noise.

The entire preprocessing pipeline was implemented in
parallel using the TensorFlow Data API| with CUDA GPU
acceleration, achieving a throughput of 1200 images per
minute on an NVIDIA T4 GPU, allowing the complete
dataset to be processed in under 15 minutes.

D. Model Architecture

The CycleGAN architecture, as shown in Fig. 1,
consisting of two generators and two discriminators for
unpaired image-to-image translation, serves as the
foundation for the proposed model. This method follows
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Fig. 1. CycleGAN generator and discriminator network structure.
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the practice in medical imaging, where important spatial
features are stored in ResNet or U-Net-based
architectures [39]. The use of two discriminators (HisDis
and PatchGAN) is also supported by previous research
emphasizing the importance of local and international
evaluations in the medical field. Each generator follows a
ResNet-based architecture consisting of two strided
convolutional layers for downsampling, nine residual
blocks for feature transformation, and two transposed
convolutional layers for upsampling. Instance
normalization and RelLU activation functions are applied
throughout the network. Skip connections within residual
blocks facilitate effective gradient propagation and
preserve anatomical features. The discriminator module
consists of two components: (1) a PatchGAN
discriminator operating on 70 x 70 patches to evaluate
local realism, and (2) a histogram-guided discriminator
(HisDis) that evaluates global pixel intensity distributions.
HisDis computes normalized intensity histograms of real
and generated images and applies a histogram
intersection loss to enforce statistical alignment.

The nine residual blocks in the ResNet-based design
of each generator enhance the model's capacity to retain
minute  anatomical information across  domain
transformations. While the upsampling method uses
transposed  convolutions along with instance
normalization and RelLU, the downsampling path uses
two convolutional layers with a stride of 2, instance
normalization, and RelLU activation. In recent research,
[4] used a speckle-aware GAN approach to generate a
more speckle-appropriate GAN that better matches the
typical statistical characteristics of ultrasound. This
architecture guarantees the generator's ability to

efficiently aggregate hierarchical features while

maintaining structural consistency.

This model incorporates a novel histogram-guided
discriminator (HisDis) alongside the traditional PatchGAN
discriminator. While HisDis uses histogram intersection
loss to learn the global pixel intensity distribution,
PatchGAN evaluates local realism on 70x70 image
patches. In addition to being aesthetically pleasing, the
synthetic images are statistically aligned with the target
domain thanks to our dual-discriminator approach. For
stable training, the adversarial loss is computed using a
least-squares GAN (LSGAN), and bidirectional mapping
accuracy is enforced using a cycle consistency loss A =
10). The overall objective function of the proposed
CycleGAN with a histogram-guided discriminator (HisDis)
is defined in Eq. (1) as follows:

Liotar = LGAN(G' Dy, X, Y)+ LGAN(F' Dy,Y, X) + Acyc['cyc
(G, F) + AnisLnis(G,Y) (1)
where G and F represent the generators for the forward
and backward mappings, respectively. The adversarial
loss is based on a least-squares formulation [40] as
shown in Eq.(2):
Lean(G, Dy, X,Y) = Eyop e [(Dy (D) = D21+ Exvpygpao
[(Dy(G(x)))?] (2)
To ensure bidirectional consistency, the cycle-consistency
loss is defined as in Eq.(3).
Leye (G, F) = Expyaraoll F(GOD)) = x i T+ By oy a9
MeFO) -yl ] 3)
Finally, the histogram intersection loss encourages
alignment of the pixel intensity distributions between the
generated and target domains, as defined in Eq.(4).
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Fig. 2 Comparison of the distribution of features of the
images during training at each phase for (a) epoch 1, (b) epoch 24, (c) epoch 43 and (d) epoch 77
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where Hg; (i) and Hy (i) denote the normalized histogram
bins of the generated and real ultrasound images,
respectively. The full objective is optimized as in Eq. (5).

G*,F* = arg min max £ 5
i g GF DyDy total ( )

The histogram-guided discriminator provides an auxiliary
supervisory signal rather than replacing the PatchGAN
discriminator. In addition to the PatchGAN discriminator,
a histogram-guided discriminator (HisDis) is introduced to
evaluate global pixel intensity distributions through
normalized histograms.

E. Model Training and Optimization

The model was trained for 100 epochs using the Adam
optimizer, with B; = 0.5 and B, = 0.999. The learning rate
was set to 2 x 107 for the generators and 1 x 107 for the
discriminators. Adversarial loss was implemented using
the least-squares GAN formulation, combined with cycle-
consistency loss, A = 10, and histogram intersection loss.
Gaussian noise, o = 0.02, was injected into discriminator
inputs to improve robustness, and weights were initialized
using Kaiming normal initialization to stabilize deep
residual learning.

Il. Results
A. Quantitative Performance

During training, the proposed model showed significant
improvements across all indicators, as shown in Table 1.
At epoch 1, the initial FID score was 2376.07, indicating a
significant difference between the synthetic and actual
images. The FID score decreased by 49.1% from 2376.07
at epoch 110 1208.49 at epoch 77, indicating a substantial
improvement in synthetic image realism and convergence
stability. Similarly, the histogram intersection increased
from 0.5002 to 0.8113, indicating improved alignment of
the pixel intensity distribution. Interestingly, the skewness
decreased by 0.64, indicating a more balanced intensity
profile in the synthetic results, even while the entropy
values between the actual, 7.16, and synthetic images,
7.40, remained the same, that is, A = +0.24. All reported
results represent mean + standard deviation across three

runs. Statistical differences between the baseline and
proposed models were significant (p < 0.05) using a
paired t-test. The synthetic images achieved a mean
SSIM of 0.91, indicating strong structural similarity with
real ultrasound scans.

Table 1. Training quality metrics

Metric Epoch 1 Epoch 77 A
FID 2376.07 1208.49 49%
Histogram 0.5002 0.8113 62%

Intersection

B. Training Dynamics

The training progresses in three phases to understand
these gains, as represented in

. As the generator learns global features during the first

phase (epochs 1-20), the FID decreases dramatically,
from 2376 to 1500. Texture smoothing then occurs during
the transition period, at epochs 21-70, reducing speckle
noise while preserving anatomical outlines. After
stabilization during epochs 71-100, the model reaches an
optimal FID of 1208.49 at epoch 77. Table 2 outlines the
characteristics of each training phase and clarifies the
division of stages based on the dynamics of FID decline,
texture refinement, and model stability. The following
graphs and visual illustrations of the FID support the
interpretation of each training phase. The graph in Error!
Reference source not found. shows a comparison of the
distribution of features of the original or Real image and
the synthesized or generated images during training at
each phase for epoch 1, epoch 24, epoch 43, and epoch
77, respectively. As the number of epochs increases, the
gap between the two narrows.

(©) ' (d)
Fig. 3. Synthetic image change visualization at the
77th epoch, consecutively from (a), (b), (c) to (d).

Fig. 3 shows the synthesized images at several key
epochs, demonstrating visual improvement from the initial
blurry , noisy stage, to a smoother result that resembles
real anatomy.

Table 2. Training phase characteristics.

Observation Epochs Key Observations

Early 1-20 Rapid FID improvement
(137%)
Transition 21-70 Noise reduction + edge
enhancement

C. Qualitative Outcomes

Beyond quantitative metrics, visual evaluation

demonstrated the model's strong clinical utility by

successfully  preserving  diagnostically  important

anatomical features in synthetic images, as shown in Fig.
4. Most notably, the model maintained clear structural
boundaries of the lateral ventricles, compared to real
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images, and accurately reproduced midline brain
structures with a detection accuracy of 91.3%.
Furthermore, the fetal skull contours exhibited improved
edge sharpness with a PSNR of 28.6 dB while achieving
effective speckle noise reduction. Importantly, this noise
suppression did not compromise anatomical fidelity, as
evidenced by the preservation of distinct ventricular
margins and consistent thalamic visibility, features critical
for clinical diagnosis. Thus, the synthetic images achieved
an optimal balance between noise reduction and
structural integrity, validating their potential for diagnostic
applications.

(c) (d)
Fig. 4. Visual comparison between real and synthetic
ultrasound images. (a) Real A, (b) Fake A, (c) Real B,

(d) Fake B. The synthetic image successfully
preserves important structures such as the lateral
ventricles and the midline of the brain, which are
diagnostically relevant.

Fig. 4 compares the original and generated images to
visually assess the quality of synthesis. The results show
that the model can preserve important anatomical
features while maintaining edge sharpness and low noise
levels.

D. Ablation Study

Quantitative evaluation of the proposed CycleGAN-HisDis
model compared with the baseline CycleGAN is
presented in Table 3. The results show consistent
improvements across multiple metrics, including Fréchet
Inception Distance (FID), histogram intersection, SSIM,
and PSNR. The findings showed that HisDis accelerated
convergence by 18 epochs and decreased the FID by
23.6%, from 1580.72 to 1208.49. This implies that since
tissue characterization and intensity distribution are
closely correlated, explicit histogram alignment is crucial
for medical image generation.

Iv. Discussion

The problem addressed in this study concerns the lack of
explicit mechanisms in existing generative models to
preserve global histogram consistency in fetal ultrasound
image synthesis. This limitation often results in synthetic
images that appear visually plausible but deviate
statistically from real ultrasound intensity distributions.
The findings of the present study directly address this
issue by demonstrating that integrating a histogram-
guided discriminator into the CycleGAN framework
improves statistical alignment between real and synthetic
images. The reduction in Fréchet Inception Distance from
1580.72 to 1208.49 indicates that the proposed
histogram-guided discriminator substantially improves
statistical alignment compared to the baseline model. The
accelerated convergence observed 18 epochs earlier
further suggests that histogram-level supervision
stabilizes the learning process. The close agreement
between entropy values of real and synthetic images at
7.16 and 7.40 confirms that global intensity characteristics
are preserved without excessive smoothing.

Table 3. Quantitative evaluation of synthetic image
quality.

Metric CycleG  CycleGAN- Improvement
AN HisDis (%)
FID 1580.72 1208.49 23.6
Histogram  0.722 0.811 +12.3
Int.

Entropy 7.16 7.40 +3.3
SSIM 0.84 0.91 +8.3
PSNR 30.1 32.8 9.0

(dB)

The observed reduction in Fréchet Inception Distance,
the substantial increase in histogram intersection, and the
close agreement in entropy values provide quantitative
evidence that the proposed approach effectively
constrains global intensity distributions. These results
confirm the study’s hypothesis that histogram-guided
discrimination can significantly improve statistical realism
without compromising anatomical structure. Furthermore,
the preservation of key fetal brain features, such as the
midline and lateral ventricles, indicates that enforcing
global statistical consistency supports rather than
undermines structural fidelity. Taken together, the results
validate the initial hypothesis and demonstrate that the
proposed method effectively addresses the problem
identified in existing generative models. By explicitly
enforcing histogram consistency, the CycleGAN-HisDis
framework bridges the gap between visual plausibility and
statistical reliability, which is essential for generating
synthetic fetal ultrasound images suitable for medical data
augmentation and diagnostic model training.

The proposed CycleGAN framework with a histogram-
guided discriminator is positioned within the context of
several state-of-the-art generative approaches for
ultrasound image synthesis. Several GAN-based
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approaches, including those proposed by Cronin et al. [3]
and Athreya et al. [4], primarily focused on enhancing
local texture realism and perceptual similarity. Cronin et
al. demonstrated that generative adversarial networks
can be used to synthesize realistic musculoskeletal
ultrasound images, primarily focusing on visual plausibility
and local texture reproduction [3]. However, their
approach did not explicitly constrain global pixel intensity
distributions, which are particularly important in fetal
ultrasound imaging. In contrast, the present study
emphasizes statistical alignment, as reflected by
improved Fréchet Inception Distance and histogram
consistency. Athreya et al. proposed a CycleGAN-based
approach combined with perceptual loss to enhance
ultrasound image quality [4]. While perceptual loss
improves feature-level similarity and sharpness, it does
not directly regulate global intensity statistics. The
proposed method differs by explicitly enforcing histogram-
level consistency, resulting in closer entropy alignment
between real and synthetic images. Other studies
addressed ultrasound-specific artifacts, such as speckle
noise, through dedicated architectural modifications. For
instance, SpeckleGAN, introduced by Bargsten and
Schlaefer, models ultrasound-specific speckle noise
through an adaptive speckle layer [22]. Their method
effectively captures noise characteristics and local texture
realism. Nevertheless, SpeckleGAN primarily addresses
speckle modeling and does not explicitly enforce global
statistical consistency. The findings of this study indicate
that histogram-guided discrimination provides a
complementary constraint that improves overall statistical
fidelity without degrading anatomical structure.

In the context of fetal ultrasound synthesis, Iskandar
et al. explored fetal brain ultrasound image synthesis
using generative models and demonstrated that
anatomical structures could be preserved in synthetic
fetal images [16]. However, their study mainly relied on
visual assessment and structural plausibility. The present
work extends this line of research by quantitatively
demonstrating statistical alignment using metrics such as
Fréchet Inception Distance, entropy, and histogram
intersection. More recent diffusion-based approaches
have achieved high visual realism in ultrasound image
synthesis, as reported by Dahan et al. [17] and Freiche et
al. [20]. Although diffusion models offer fine-grained
control over texture and noise, they typically require larger
datasets and higher computational resources. Compared
with these methods, the proposed CycleGAN-based
framework achieves competitive realism while remaining
computationally efficient and suitable for data-limited
clinical environments. Hybrid generative architectures
incorporating attention mechanisms or progressive
refinement strategies have also been reported to improve
structural preservation in medical image synthesis [12],
[23]. These methods primarily enhance spatial feature
representation. The present study complements such
approaches by demonstrating that spatial fidelity alone is
insufficient for ultrasound imaging and that global
statistical alignment is essential to ensure that synthetic
images are representative of real clinical data

distributions. Overall, compared with these state-of-the-
art approaches, the key contribution of this work lies in
explicitly enforcing global histogram consistency while
preserving local anatomical structures. The improved
quantitative metrics and anatomical preservation
achieved in this study indicate that statistical alignment
represents an important advancement beyond texture- or
structure-driven generative models.

Despite the encouraging results, several limitations
should be acknowledged. First, the dataset used in this
study is restricted to fetal ultrasound images acquired
between 18 and 24 weeks of gestation. As a result, the
generalizability of the proposed model to other gestational
stages remains to be validated. Second, the evaluation of
synthetic images was primarily based on quantitative
metrics and visual inspection, without blinded assessment
by expert clinicians. Although structural preservation
metrics provide useful indicators, clinical validation is
necessary to fully assess diagnostic reliability. In addition,
the study focused exclusively on B-mode fetal head
images. While this choice maximizes clinical relevance for
routine fetal assessment, it limits the applicability of the
findings to other ultrasound modalities or anatomical
regions. Finally, although histogram-guided discrimination
improves global statistical consistency, it may not fully
capture more complex contextual or semantic
relationships present in ultrasound images.

The findings of this study have important implications
for medical image synthesis and clinical Al applications.
Previous studies have shown that synthetic ultrasound
images can effectively support data augmentation and
improve the robustness of downstream tasks such as
classification and segmentation when statistical
consistency with real data is preserved [3], [16]. By
explicitly enforcing global histogram alignment, the
proposed histogram-guided discriminator addresses a
critical limitation identified in prior generative models,
where visual realism alone was insufficient to ensure
distribution-level fidelity [4], [22]. From a clinical
perspective, statistically aligned synthetic ultrasound
images have the potential to enhance the training of
diagnostic models and support medical education without
increasing patient data exposure, as highlighted in recent
studies on synthetic medical imaging [17], [20]. Moreover,
ensuring consistency in global intensity distributions is
particularly relevant for ultrasound imaging, where pixel
intensity is closely associated with tissue echogenicity
and diagnostic interpretation [12], [23]. These implications
suggest that histogram-guided discriminator-based
modeling can serve as a complementary strategy to
existing GAN and diffusion-based approaches,
contributing to the development of reliable and privacy-
preserving medical Al systems.

V. Conclusion

This study aimed to develop a CycleGAN-based model
with a histogram-guided discriminator (HisDis) for
generating realistic B-mode fetal ultrasound images.
The proposed model achieved a Fréchet Inception
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Distance (FID) of 1208.49, a 62% improvement in
histogram intersection, and an entropy value of 7.40,
indicating high structural and statistical similarity to real
images. The model successfully preserved clinically
important features such as the brain midline and lateral
ventricles with loU = 0.82 and accuracy = 91.3%. To
improve the visual and structural quality of the generated
images, future studies may integrate advanced strategies
such as perceptual loss or semantically guided learning
mechanisms. To enhance model generalization and
applicability across diverse clinical scenarios, the dataset
can be expanded to include images from different
anatomical regions or additional medical conditions.
Further evaluation is also required to assess the
effectiveness of synthetic images in more complex
downstream tasks, including tissue classification and
segmentation. In clinical settings, the proposed model has
the potential to support medical training processes and
serve as an auxiliary tool for diagnostic decision-making.
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