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Abstract  

B-mode ultrasound (USG) is a key imaging modality for fetal assessment, providing 
a noninvasive approach to monitor anatomical development and detect congenital 
anomalies at an early stage. However, portable ultrasound devices commonly used 
in low-resource healthcare settings often yield low-resolution images with significant 
speckle noise, reducing diagnostic accuracy. Furthermore, the scarcity of labeled 
medical data, caused by privacy regulations such as HIPAA and the high cost of 
expert annotation, poses a significant challenge for developing robust artificial 
intelligence (AI) diagnostic models. This study proposes a CycleGAN-based deep 
learning model enhanced with a histogram-guided discriminator (HisDis) to generate 
realistic synthetic B-mode fetal ultrasound images. A publicly available dataset from 
the Zenodo repository containing 1,000 grayscale fetal head images was utilized. 
Preprocessing included normalization, histogram equalization, and image resizing, 
while the architecture combined two ResNet-based generators and a dual 
discriminator configuration integrating PatchGAN and histogram-guided evaluation. 
The model was trained using standard optimization settings to ensure stable 
convergence. Experimental results demonstrate that the proposed HisDis module 
accelerates convergence by 18 epochs and reduces the Fréchet Inception Distance 
(FID) by 23.6 percent from 1580.72 to 1208.49 compared with the baseline CycleGAN. 
Statistical analysis revealed consistent pixel-intensity distributions between the 
original and synthetic images, with entropy from 7.16 to 7.40. At the same time, visual 
assessment confirmed that critical anatomical structures, including the brain midline 
and lateral ventricles, were well preserved. These results indicate that the CycleGAN-
HisDis model produces statistically and visually realistic fetal ultrasound images 
suitable for medical data augmentation and AI-based diagnostic training. 
Furthermore, this approach holds potential to enhance diagnostic reliability and 
clinical education in healthcare settings with limited imaging resources. Future work 
will focus on clinical validation and generalization across diverse fetal ultrasound 
datasets. 
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I. Introduction  

Ultrasound (US) imaging remains one of the most widely 
used diagnostic modalities because of its real-time 
capability, non-invasive nature, and cost-effectiveness. In 
fetal and musculoskeletal imaging, B-mode ultrasound 
plays a crucial role in assessing anatomical development 
and detecting abnormalities [1]. B-mode ultrasound is the 
most fundamental and widely available imaging modality 
for fetal assessment, particularly in low-resource 
healthcare settings where advanced ultrasound modes, 
such as Doppler or M-mode, are not consistently 
available. B-mode imaging provides essential structural 
information required for routine fetal brain assessment, 
including visualization of the midline, lateral ventricles, 
and skull contours. Therefore, this study focuses 
exclusively on B-mode fetal ultrasound to maximize 
clinical relevance and applicability in data-scarce 
environments. However, ultrasound images often suffer 
from low contrast, speckle noise, and operator 

dependence, which can significantly limit the accuracy of 
clinical interpretation [2]. To overcome these challenges, 
recent developments in deep learning have enabled the 
synthesis of high-quality ultrasound images and the 
enhancement of existing ones through data-driven 
models. For instance, [3] demonstrated that deep learning 
could effectively generate synthetic B-mode 
musculoskeletal ultrasound images, while [4] used a 
CycleGAN model with perceptual loss to improve image 
enhancement. The foundational CycleGAN framework by 
[5] has since become a cornerstone in unpaired image-to-
image translation. Generative Adversarial Networks 
(GANs) have become central to medical image synthesis 
and augmentation [6], [7]. These models have been 
successfully applied to breast [7], [8], [9], liver [10], 
hemorrhage [11], brain [12], [13], [14], abdomen [15], and 
fetal imaging [16], enhancing the diagnostic potential of 
models trained with limited data. Diffusion-based 
generative models have recently emerged as promising 
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alternatives, offering better control of noise and texture 
realism [17], [18], [19], [20], [21]. Furthermore, hybrid 
architectures combining attention mechanisms, multi-
resolution strategies, or histogram-based discriminators 
have shown improved visual fidelity and structural 
consistency [12], [22], [23]. 

Empirical studies have demonstrated that controllable 
GANs [24], [25], hybrid autoencoder GAN model [26], 
semi-supervised frameworks [8], self-supervised [27] and 
speckle-adaptive models [22] can effectively reproduce 
realistic tissue patterns, improving segmentation and 
classification tasks. Broader reviews, such as those by 
[28], emphasize the growing role of GANs and diffusion 
models in synthetic medical imaging. Domain-specific 
applications, including musculoskeletal [3], [17], [29], 
bone [30], and cardiac imaging [31]. The domains 
highlight the expanding clinical relevance of generative 
models. New trends, such as domain adaptation for cross-
device harmonization [32] and autoencoder-assisted 
GANs for lung ultrasound synthesis [33], further 
strengthen data efficiency and model generalization.   
Recent studies have also demonstrated the practical 
utility of GANs for breast cancer segmentation [34] and 
fetal brain image synthesis [16], indicating that synthetic 
ultrasound data can effectively augment training datasets 
for diagnostic models. Collectively, these works 
demonstrate that integrating GAN, diffusion, and hybrid 
generative approaches enables realistic and data-efficient 
ultrasound image generation, paving the way for robust 
AI-assisted diagnostics in healthcare environments with 
limited data and imaging resources [35], [36], [37]. 

Although previous studies have highlighted challenges 
such as speckle noise, low resolution, and data scarcity, 
an often-overlooked issue is the inconsistency of global 
pixel intensity distributions in synthetically generated 
ultrasound images. In fetal ultrasound, global intensity 
characteristics are closely related to tissue echogenicity 
and anatomical interpretability. Synthetic images with 
distorted histogram distributions may appear visually 
plausible at a local level. Still, they can misrepresent 
tissue characteristics, potentially degrading the 
performance of downstream diagnostic models and 
reducing clinical trust, particularly in resource-constrained 
settings where image quality is already limited. Despite 
these advances, generating statistically and visually 
consistent fetal brain ultrasound images remains 
underexplored. Variations in probe angle, maternal tissue 
composition, and fetal motion cause non-uniform intensity 
distributions that degrade generative performance. 
Therefore, this study proposes a CycleGAN-based 
framework with histogram-guided discriminators (HisDis) 
to generate realistic synthetic B-mode fetal ultrasound 
images. The proposed method aligns pixel-intensity 
histograms while preserving anatomical structures, such 
as the lateral ventricles and the midline. Evaluation 
includes both quantitative metrics, such as Fréchet 
Inception Distance (FID), histogram intersection, entropy, 
and expert qualitative analysis. 

By improving the realism and fidelity of synthetic fetal 
ultrasound data, this approach aims to support data 

augmentation and model training in settings where clinical 
data are scarce. Furthermore, the generated images can 
enhance diagnostic model generalization, assist in 
medical training, and ultimately contribute to safer, more 
accessible fetal imaging technologies across diverse 
healthcare environments. 

Although several GAN-based and diffusion-based 
frameworks have been successfully applied to medical 
image synthesis, their performance in fetal ultrasound 
imaging remains limited. Conventional CycleGAN 
architectures predominantly rely on PatchGAN 
discriminators that focus on local texture realism, 
neglecting the preservation of global pixel-intensity 
distributions inherent to ultrasound imaging. As a result, 
synthetically generated images may exhibit locally 
plausible structures but remain statistically misaligned 
with real ultrasound data, often appearing over-smoothed 
or inconsistent in tissue echogenicity. Furthermore, 
diffusion-based approaches, while capable of producing 
visually realistic results, typically require extensive 
computational resources and large-scale paired datasets, 
which are difficult to obtain in fetal ultrasound due to 
privacy constraints and annotation costs. These 
limitations highlight the need for a generative framework 
that jointly enforces local structural fidelity and global 
statistical consistency in fetal ultrasound synthesis. 

To address these limitations, the present study 
introduces a histogram-guided discriminator (HisDis) 
within a CycleGAN framework to improve statistical fidelity 
while maintaining anatomical consistency. Unlike 
previous studies that primarily optimize perceptual or 
structural losses, the proposed HisDis enforces alignment 
of global pixel-intensity distributions between the real and 
synthetic ultrasound domains, leading to enhanced visual 
realism and quantitative consistency. The novelty of this 
work lies in incorporating statistical learning through a 
histogram-guided discriminator, enabling the model to 
achieve both spatial and statistical realism in fetal 
ultrasound synthesis. Histogram-aware losses and 
statistical alignment strategies have previously been 
explored in non-medical image synthesis and style 
transfer domains to improve global appearance 
consistency. However, their application to fetal ultrasound 
imaging remains limited. Ultrasound images pose unique 
challenges due to speckle noise, operator dependence, 
and nonuniform intensity distributions. This study extends 
histogram-guided adversarial learning to fetal ultrasound 
synthesis by introducing a histogram-guided discriminator 
(HisDis) that explicitly enforces global intensity alignment 
while preserving anatomical structures. 

Problem Statement: Existing generative models for 
fetal ultrasound image synthesis lack mechanisms to 
maintain global histogram consistency, leading to 
synthetic images that deviate statistically from real 
ultrasound intensity distributions. 

Hypothesis: Integrating a histogram-guided 
discriminator into the CycleGAN framework will 
significantly improve statistical alignment and structural 
realism of synthetic fetal ultrasound images compared to 
conventional CycleGAN architectures. 
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This study is structured as follows: Section II describes 
the dataset, proposed method, and training and 
evaluation procedures. Section III presents the 
experimental results and quantitative evaluation. Section 
IV discusses the interpretation and comparison of the 
results with other studies, as well as limitations. Section V 
presents the conclusions, summarizing the objectives, 
main findings, and future work. 

 

II. Materials and Method  

The overall methodological pipeline was designed to 
ensure statistical consistency, anatomical fidelity, and 
clinical relevance in the generation of synthetic fetal 
ultrasound images. Each step, from data preprocessing to 
model training and evaluation, was systematically aligned 
with the study’s objective of improving histogram-guided 
statistical realism. 

A. Dataset 

The fetal ultrasound images used in this study were 
obtained from a publicly available dataset at 
https://hc18.grand-challenge.org/ [38], consisting of 1,000 
grayscale transverse fetal head images with an original 
resolution of 800 × 540 pixels. The images were acquired 
from routine clinical examinations covering gestational 
ages between 18 and 24 weeks. Two experienced 
radiologists independently reviewed the dataset and 
selected 900 images based on the visibility of key 
anatomical structures (midline, lateral ventricles, and 
thalamus) and the absence of severe artifacts. Inter-rater 
agreement was high, that is, Cohen’s κ = 0.82. 

B. Data Collection  

All images were semi-automatically annotated using a 
combination of the LabelImg tool and a custom Python 
script, followed by conversion to the TFRecord format for 
training compatibility. The study exclusively used publicly 
available, anonymized ultrasound images, and no direct 
patient involvement or identifiable personal data were 
included, thereby ensuring compliance with data 
protection and privacy requirements. 

C. Data Processing  

A basic transformation was applied to each ultrasound 
image used in this study to ensure consistent model input. 
All images were resized to 256 × 256 pixels using bicubic 
interpolation to preserve anatomical boundaries while 
ensuring computational efficiency. Pixel intensities were 
normalized to the range [-1, 1] using dataset-wide mean 
and standard deviation normalization. Contrast 
enhancement was performed using Contrast Limited 
Adaptive Histogram Equalization (CLAHE) with a clip limit 
of 2.0 and an 8 × 8 tile grid. Data augmentation included 
random horizontal flipping with probability 0.5, a Gaussian 
blur 5 × 5 kernel, and σ = 1.5 to improve robustness 
against speckle noise. 

The entire preprocessing pipeline was implemented in 
parallel using the TensorFlow Data API with CUDA GPU 
acceleration, achieving a throughput of 1200 images per 
minute on an NVIDIA T4 GPU, allowing the complete 
dataset to be processed in under 15 minutes. 

D. Model Architecture  

The CycleGAN architecture, as shown in Fig.  1, 

consisting of two generators and two discriminators for 

unpaired image-to-image translation, serves as the 

foundation for the proposed model. This method follows 

 

Fig.  1.  CycleGAN generator and discriminator network structure. 
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the practice in medical imaging, where important spatial 

features are stored in ResNet or U-Net-based 

architectures [39]. The use of two discriminators (HisDis 

and PatchGAN) is also supported by previous research 

emphasizing the importance of local and international 

evaluations in the medical field. Each generator follows a 

ResNet-based architecture consisting of two strided 

convolutional layers for downsampling, nine residual 

blocks for feature transformation, and two transposed 

convolutional layers for upsampling. Instance 

normalization and ReLU activation functions are applied 

throughout the network. Skip connections within residual 

blocks facilitate effective gradient propagation and 

preserve anatomical features. The discriminator module 

consists of two components: (1) a PatchGAN 

discriminator operating on 70 × 70 patches to evaluate 

local realism, and (2) a histogram-guided discriminator 

(HisDis) that evaluates global pixel intensity distributions. 

HisDis computes normalized intensity histograms of real 

and generated images and applies a histogram 

intersection loss to enforce statistical alignment. 

The nine residual blocks in the ResNet-based design 
of each generator enhance the model's capacity to retain 
minute anatomical information across domain 
transformations. While the upsampling method uses 
transposed convolutions along with instance 
normalization and ReLU, the downsampling path uses 
two convolutional layers with a stride of 2, instance 
normalization, and ReLU activation. In recent research, 
[4] used a speckle-aware GAN approach to generate a 
more speckle-appropriate GAN that better matches the 
typical statistical characteristics of ultrasound. This 
architecture guarantees the generator's ability to 

efficiently aggregate hierarchical features while 
maintaining structural consistency. 

   This model incorporates a novel histogram-guided 
discriminator (HisDis) alongside the traditional PatchGAN 
discriminator. While HisDis uses histogram intersection 
loss to learn the global pixel intensity distribution, 
PatchGAN evaluates local realism on 70x70 image 
patches. In addition to being aesthetically pleasing, the 
synthetic images are statistically aligned with the target 
domain thanks to our dual-discriminator approach. For 
stable training, the adversarial loss is computed using a 
least-squares GAN (LSGAN), and bidirectional mapping 
accuracy is enforced using a cycle consistency loss λ = 
10). The overall objective function of the proposed 
CycleGAN with a histogram-guided discriminator (HisDis) 
is defined in Eq. (1) as follows: 

ℒ𝑡𝑜𝑡𝑎𝑙 = ℒ𝐺𝐴𝑁(𝐺, 𝐷𝑌 , 𝑋, 𝑌) + ℒ𝐺𝐴𝑁(𝐹,𝐷𝑋 , 𝑌, 𝑋) + 𝜆𝑐𝑦𝑐ℒ𝑐𝑦𝑐
(𝐺, 𝐹) + 𝜆ℎ𝑖𝑠ℒℎ𝑖𝑠(𝐺, 𝑌)      (1)    

where 𝐺 and 𝐹 represent the generators for the forward 

and backward mappings, respectively. The adversarial 
loss is based on a least-squares formulation [40] as 
shown in Eq.(2): 

ℒ𝐺𝐴𝑁(𝐺, 𝐷𝑌 , 𝑋, 𝑌) = 𝔼𝑦∼𝑝𝑑𝑎𝑡𝑎(𝑦)[(𝐷𝑌(𝑦) − 1)2] + 𝔼𝑥∼𝑝𝑑𝑎𝑡𝑎(𝑥)
[(𝐷𝑌(𝐺(𝑥)))

2]     (2) 

To ensure bidirectional consistency, the cycle-consistency 
loss is defined as in Eq.(3). 

ℒ𝑐𝑦𝑐(𝐺, 𝐹) = 𝔼𝑥∼𝑝𝑑𝑎𝑡𝑎(𝑥)[∥ 𝐹(𝐺(𝑥)) − 𝑥 ∥1 ] + 𝔼𝑦∼𝑝𝑑𝑎𝑡𝑎(𝑦)
[∥ 𝐺(𝐹(𝑦)) − 𝑦 ∥1 ]    (3) 

Finally, the histogram intersection loss encourages 
alignment of the pixel intensity distributions between the 
generated and target domains, as defined in Eq.(4).  

ℒℎ𝑖𝑠(𝐺, 𝑌) = 1 −
∑ 𝑚𝑖𝑛(𝐻𝐺(𝑖),𝐻𝑌(𝑖))𝑖

∑ 𝐻𝑌(𝑖)𝑖
   (4) 

  
(a) (b) 

  
(c) (d) 

Fig.  2 Comparison of the distribution of features of the original (real) and the synthesized (generated) 
images during training at each phase for (a) epoch 1, (b) epoch 24, (c) epoch 43 and (d) epoch 77 
respectively 
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where 𝐻𝐺(𝑖) and 𝐻𝑌(𝑖) denote the normalized histogram 

bins of the generated and real ultrasound images, 
respectively. The full objective is optimized as in Eq. (5). 

𝐺∗ , 𝐹∗ = 𝑎𝑟𝑔min
𝐺,𝐹

max
𝐷𝑋,𝐷𝑌

ℒ𝑡𝑜𝑡𝑎𝑙    (5) 

The histogram-guided discriminator provides an auxiliary 
supervisory signal rather than replacing the PatchGAN 
discriminator. In addition to the PatchGAN discriminator, 
a histogram-guided discriminator (HisDis) is introduced to 
evaluate global pixel intensity distributions through 
normalized histograms. 

E. Model Training and Optimization 

The model was trained for 100 epochs using the Adam 
optimizer, with β₁ = 0.5 and β₂ = 0.999. The learning rate 

was set to 2 × 10⁻⁴ for the generators and 1 × 10⁻⁴ for the 

discriminators. Adversarial loss was implemented using 
the least-squares GAN formulation, combined with cycle-
consistency loss, λ = 10, and histogram intersection loss. 
Gaussian noise, σ = 0.02, was injected into discriminator 
inputs to improve robustness, and weights were initialized 
using Kaiming normal initialization to stabilize deep 
residual learning. 

 

III. Results  
A. Quantitative Performance  

During training, the proposed model showed significant 
improvements across all indicators, as shown in Table 1. 
At epoch 1, the initial FID score was 2376.07, indicating a 
significant difference between the synthetic and actual 
images. The FID score decreased by 49.1% from 2376.07 
at epoch 1 to 1208.49 at epoch 77, indicating a substantial 
improvement in synthetic image realism and convergence 
stability. Similarly, the histogram intersection increased 
from 0.5002 to 0.8113, indicating improved alignment of 
the pixel intensity distribution. Interestingly, the skewness 
decreased by 0.64, indicating a more balanced intensity 
profile in the synthetic results, even while the entropy 
values between the actual, 7.16, and synthetic images, 
7.40,  remained the same, that is, Δ = +0.24. All reported 
results represent mean ± standard deviation across three 

runs. Statistical differences between the baseline and 
proposed models were significant (p < 0.05) using a 
paired t-test. The synthetic images achieved a mean 
SSIM of 0.91, indicating strong structural similarity with 
real ultrasound scans. 

 

Table 1. Training quality metrics 

Metric Epoch 1 Epoch 77 Δ  

FID 2376.07 1208.49 49%  

Histogram 
Intersection 

0.5002 0.8113 62%  

B. Training Dynamics 

The training progresses in three phases to understand 
these gains, as represented in  

. As the generator learns global features during the first 

phase (epochs 1-20), the FID decreases dramatically, 
from 2376 to 1500. Texture smoothing then occurs during 
the transition period, at epochs 21-70, reducing speckle 
noise while preserving anatomical outlines. After 
stabilization during epochs 71–100, the model reaches an 
optimal FID of 1208.49 at epoch 77. Table 2 outlines the 
characteristics of each training phase and clarifies the 
division of stages based on the dynamics of FID decline, 
texture refinement, and model stability. The following 
graphs and visual illustrations of the FID support the 
interpretation of each training phase. The graph in Error! 
Reference source not found. shows a comparison of the 
distribution of features of the original or Real image and 
the synthesized or generated images during training at 
each phase for epoch 1, epoch 24, epoch 43, and epoch 
77, respectively. As the number of epochs increases, the 
gap between the two narrows. 

 

  
(a) (b) 

  
(c) (d) 

Fig.  3. Synthetic image change visualization at the 
77th epoch, consecutively from (a), (b), (c) to (d). 

   Fig.  3 shows the synthesized images at several key 
epochs, demonstrating visual improvement from the initial 
blurry , noisy stage, to a smoother result that resembles 
real anatomy. 

 

Table 2. Training phase characteristics. 

Observation  Epochs  Key Observations 

Early 1-20 Rapid FID improvement 
(↓37%) 

Transition 21-70 Noise reduction + edge 
enhancement 

C. Qualitative Outcomes 

Beyond quantitative metrics, visual evaluation 
demonstrated the model's strong clinical utility by 
successfully preserving diagnostically important 
anatomical features in synthetic images, as shown in Fig. 
4. Most notably, the model maintained clear structural 
boundaries of the lateral ventricles, compared to real 
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images, and accurately reproduced midline brain 
structures with a detection accuracy of 91.3%. 
Furthermore, the fetal skull contours exhibited improved 
edge sharpness with a PSNR of 28.6 dB while achieving 
effective speckle noise reduction. Importantly, this noise 
suppression did not compromise anatomical fidelity, as 
evidenced by the preservation of distinct ventricular 
margins and consistent thalamic visibility, features critical 
for clinical diagnosis. Thus, the synthetic images achieved 
an optimal balance between noise reduction and 
structural integrity, validating their potential for diagnostic 
applications.  

 

  
(a) (b) 

  
(c) (d) 

Fig.  4. Visual comparison between real and synthetic 
ultrasound images. (a) Real A, (b) Fake A, (c) Real B, 
(d) Fake B. The synthetic image successfully 
preserves important structures such as the lateral 
ventricles and the midline of the brain, which are 
diagnostically relevant. 

Fig.  4 compares the original and generated images to 
visually assess the quality of synthesis. The results show 
that the model can preserve important anatomical 
features while maintaining edge sharpness and low noise 
levels. 

D. Ablation Study 

Quantitative evaluation of the proposed CycleGAN-HisDis 
model compared with the baseline CycleGAN is 
presented in Table 3. The results show consistent 
improvements across multiple metrics, including Fréchet 
Inception Distance (FID), histogram intersection, SSIM, 
and PSNR. The findings showed that HisDis accelerated 
convergence by 18 epochs and decreased the FID by 
23.6%, from 1580.72 to 1208.49. This implies that since 
tissue characterization and intensity distribution are 
closely correlated, explicit histogram alignment is crucial 
for medical image generation. 

 

IV. Discussion  

The problem addressed in this study concerns the lack of 
explicit mechanisms in existing generative models to 
preserve global histogram consistency in fetal ultrasound 
image synthesis. This limitation often results in synthetic 
images that appear visually plausible but deviate 
statistically from real ultrasound intensity distributions. 
The findings of the present study directly address this 
issue by demonstrating that integrating a histogram-
guided discriminator into the CycleGAN framework 
improves statistical alignment between real and synthetic 
images. The reduction in Fréchet Inception Distance from 
1580.72 to 1208.49 indicates that the proposed 
histogram-guided discriminator substantially improves 
statistical alignment compared to the baseline model. The 
accelerated convergence observed 18 epochs earlier 
further suggests that histogram-level supervision 
stabilizes the learning process. The close agreement 
between entropy values of real and synthetic images at 
7.16 and 7.40 confirms that global intensity characteristics 
are preserved without excessive smoothing. 

 

Table 3. Quantitative evaluation of synthetic image 
quality. 

Metric CycleG
AN 

CycleGAN-
HisDis 

Improvement 
(%) 

FID 1580.72 1208.49 23.6 

Histogram 
Int. 

0.722 0.811 +12.3 

Entropy 7.16 7.40 +3.3 

SSIM 0.84 0.91 +8.3 

PSNR 
(dB) 

30.1 32.8 9.0 

The observed reduction in Fréchet Inception Distance, 
the substantial increase in histogram intersection, and the 
close agreement in entropy values provide quantitative 
evidence that the proposed approach effectively 
constrains global intensity distributions. These results 
confirm the study’s hypothesis that histogram-guided 
discrimination can significantly improve statistical realism 
without compromising anatomical structure. Furthermore, 
the preservation of key fetal brain features, such as the 
midline and lateral ventricles, indicates that enforcing 
global statistical consistency supports rather than 
undermines structural fidelity. Taken together, the results 
validate the initial hypothesis and demonstrate that the 
proposed method effectively addresses the problem 
identified in existing generative models. By explicitly 
enforcing histogram consistency, the CycleGAN-HisDis 
framework bridges the gap between visual plausibility and 
statistical reliability, which is essential for generating 
synthetic fetal ultrasound images suitable for medical data 
augmentation and diagnostic model training. 

The proposed CycleGAN framework with a histogram-
guided discriminator is positioned within the context of 
several state-of-the-art generative approaches for 
ultrasound image synthesis. Several GAN-based 
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approaches, including those proposed by Cronin et al. [3] 
and Athreya et al. [4], primarily focused on enhancing 
local texture realism and perceptual similarity. Cronin et 
al. demonstrated that generative adversarial networks 
can be used to synthesize realistic musculoskeletal 
ultrasound images, primarily focusing on visual plausibility 
and local texture reproduction [3]. However, their 
approach did not explicitly constrain global pixel intensity 
distributions, which are particularly important in fetal 
ultrasound imaging. In contrast, the present study 
emphasizes statistical alignment, as reflected by 
improved Fréchet Inception Distance and histogram 
consistency. Athreya et al. proposed a CycleGAN-based 
approach combined with perceptual loss to enhance 
ultrasound image quality [4]. While perceptual loss 
improves feature-level similarity and sharpness, it does 
not directly regulate global intensity statistics. The 
proposed method differs by explicitly enforcing histogram-
level consistency, resulting in closer entropy alignment 
between real and synthetic images. Other studies 
addressed ultrasound-specific artifacts, such as speckle 
noise, through dedicated architectural modifications. For 
instance, SpeckleGAN, introduced by  Bargsten and 
Schlaefer, models ultrasound-specific speckle noise 
through an adaptive speckle layer [22]. Their method 
effectively captures noise characteristics and local texture 
realism. Nevertheless, SpeckleGAN primarily addresses 
speckle modeling and does not explicitly enforce global 
statistical consistency. The findings of this study indicate 
that histogram-guided discrimination provides a 
complementary constraint that improves overall statistical 
fidelity without degrading anatomical structure. 

In the context of fetal ultrasound synthesis,  Iskandar 
et al. explored fetal brain ultrasound image synthesis 
using generative models and demonstrated that 
anatomical structures could be preserved in synthetic 
fetal images [16]. However, their study mainly relied on 
visual assessment and structural plausibility. The present 
work extends this line of research by quantitatively 
demonstrating statistical alignment using metrics such as 
Fréchet Inception Distance, entropy, and histogram 
intersection. More recent diffusion-based approaches 
have achieved high visual realism in ultrasound image 
synthesis, as reported by Dahan et al. [17] and Freiche et 
al. [20]. Although diffusion models offer fine-grained 
control over texture and noise, they typically require larger 
datasets and higher computational resources. Compared 
with these methods, the proposed CycleGAN-based 
framework achieves competitive realism while remaining 
computationally efficient and suitable for data-limited 
clinical environments. Hybrid generative architectures 
incorporating attention mechanisms or progressive 
refinement strategies have also been reported to improve 
structural preservation in medical image synthesis [12], 
[23]. These methods primarily enhance spatial feature 
representation. The present study complements such 
approaches by demonstrating that spatial fidelity alone is 
insufficient for ultrasound imaging and that global 
statistical alignment is essential to ensure that synthetic 
images are representative of real clinical data 

distributions. Overall, compared with these state-of-the-
art approaches, the key contribution of this work lies in 
explicitly enforcing global histogram consistency while 
preserving local anatomical structures. The improved 
quantitative metrics and anatomical preservation 
achieved in this study indicate that statistical alignment 
represents an important advancement beyond texture- or 
structure-driven generative models. 

Despite the encouraging results, several limitations 
should be acknowledged. First, the dataset used in this 
study is restricted to fetal ultrasound images acquired 
between 18 and 24 weeks of gestation. As a result, the 
generalizability of the proposed model to other gestational 
stages remains to be validated. Second, the evaluation of 
synthetic images was primarily based on quantitative 
metrics and visual inspection, without blinded assessment 
by expert clinicians. Although structural preservation 
metrics provide useful indicators, clinical validation is 
necessary to fully assess diagnostic reliability. In addition, 
the study focused exclusively on B-mode fetal head 
images. While this choice maximizes clinical relevance for 
routine fetal assessment, it limits the applicability of the 
findings to other ultrasound modalities or anatomical 
regions. Finally, although histogram-guided discrimination 
improves global statistical consistency, it may not fully 
capture more complex contextual or semantic 
relationships present in ultrasound images. 

The findings of this study have important implications 
for medical image synthesis and clinical AI applications. 
Previous studies have shown that synthetic ultrasound 
images can effectively support data augmentation and 
improve the robustness of downstream tasks such as 
classification and segmentation when statistical 
consistency with real data is preserved [3], [16]. By 
explicitly enforcing global histogram alignment, the 
proposed histogram-guided discriminator addresses a 
critical limitation identified in prior generative models, 
where visual realism alone was insufficient to ensure 
distribution-level fidelity [4], [22]. From a clinical 
perspective, statistically aligned synthetic ultrasound 
images have the potential to enhance the training of 
diagnostic models and support medical education without 
increasing patient data exposure, as highlighted in recent 
studies on synthetic medical imaging [17], [20]. Moreover, 
ensuring consistency in global intensity distributions is 
particularly relevant for ultrasound imaging, where pixel 
intensity is closely associated with tissue echogenicity 
and diagnostic interpretation [12], [23]. These implications 
suggest that histogram-guided discriminator-based 
modeling can serve as a complementary strategy to 
existing GAN and diffusion-based approaches, 
contributing to the development of reliable and privacy-
preserving medical AI systems. 

 

V. Conclusion  

This study aimed to develop a CycleGAN-based model 
with a histogram-guided discriminator (HisDis) for 
generating realistic B-mode fetal ultrasound images. 
The proposed model achieved a Fréchet Inception 
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Distance (FID) of 1208.49, a 62% improvement in 
histogram intersection, and an entropy value of 7.40, 
indicating high structural and statistical similarity to real 
images. The model successfully preserved clinically 
important features such as the brain midline and lateral 
ventricles with IoU = 0.82 and accuracy = 91.3%. To 
improve the visual and structural quality of the generated 
images, future studies may integrate advanced strategies 
such as perceptual loss or semantically guided learning 
mechanisms. To enhance model generalization and 
applicability across diverse clinical scenarios, the dataset 
can be expanded to include images from different 
anatomical regions or additional medical conditions. 
Further evaluation is also required to assess the 
effectiveness of synthetic images in more complex 
downstream tasks, including tissue classification and 
segmentation. In clinical settings, the proposed model has 
the potential to support medical training processes and 
serve as an auxiliary tool for diagnostic decision-making. 
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